KYUNGPOOK Math. J. 58(2018), 697-709
https://doi.org/10.5666/KMJ.2018.58.4.697
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Coefficient Bounds for Bi-spirallike Analytic Functions

Madan Mohan Soren*
Department of Mathematics, Berhampur University, Bhanja Bihar-760007, Ganjam, Odisha, India
e-mail : soren85@rediffmail.com

Akshaya Kumar Mishra
Director, Institute of Mathematics and Applications, Andharua-751003, Bhubaneswar, Odisha, India
e-mail: akshayam2001@yahoo.co.in
Abstract. In the present paper, we introduce and investigate two new subclasses, namely; the class of strongly α-bi-spirallike functions of order β and α-bi-spirallike functions of order ρ, of the function class Σ; of normalized analytic and bi-univalent functions in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \text { and }|z|<1\} .
$$

We find estimates on the coefficients $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{4}\right|$ for functions in these two subclasses.

1. Introduction and Definitions

Let \mathcal{A} be the class of analytic functions $f(z)$ in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

and represented by the normalized series:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad(z \in \mathbb{U}) \tag{1.1}
\end{equation*}
$$

We denote by \mathcal{S} the family of univalent functions in \mathcal{A}. (see, for details, [4, 27]). It is well known that every function $f \in \mathcal{S}$ has an inverse f^{-1}, defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

* Corresponding Author.

Received January 10, 2018; revised October 13, 2018; accepted October 24, 2018.
2010 Mathematics Subject Classification: 30C45, 30C50.
Key words and phrases: univalent functions, bi-univalent functions, bi-spirallike functions, Taylor-Maclaurin series, coefficient bounds.
and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right) \quad[4] .
$$

The inverse function $f^{-1}(w)$ is given by

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{1.2}
\end{equation*}
$$

The function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if $(i) f \in \mathcal{S}$ and $(i i) f^{-1}(w)$ has an univalent analytic continuation to $|w|<1$. Let Σ be the class of bi-univalent functions in \mathbb{U}. Initial pioneering work on the class Σ were done in $[9,16]$. Srivastava et al. [26] mentioned some interesting examples of functions in the class Σ. Recently, Mishra and Soren [14] were add two more examples which are well demonstrated there in.

Špaček [19] and Libera [11] introduced the families of α-spirallike functions $\left(-\frac{\pi}{2}<\alpha<\frac{\pi}{2}\right)$ and α-spirallike functions of order $\rho\left(-\frac{\pi}{2}<\alpha<\frac{\pi}{2}, 0 \leq \rho \leq 1\right)$ respectively. Libera [11] completely settled the coefficient estimate problem for α-spirallike functions of order ρ. In this paper we introduce the families of α-bispirallike functions of order ρ and strongly α-bi-spirallike functions of order β. We find estimates for $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{4}\right|$ for functions, of the form (1.1), in both these classes. Through out in this section also, we continue to denote by g the analytic continuation of the inverse of the function f to \mathbb{U}. We now have the following definitions:

Definition 1.1. The function $f(z)$, given by (1.1), is said to be a member of $\alpha-S \mathcal{P}_{\Sigma}^{\beta}$, the class of strongly α-bi-spirallike functions of order β ($|\alpha| \leq \frac{\pi}{2}, 0 \leq \beta<$ 1), if each of the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad\left|\arg \left(e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right)\right|<\beta \frac{\pi}{2} \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(e^{i \alpha} \frac{w g^{\prime}(w)}{g(w)}\right)\right|<\beta \frac{\pi}{2} \quad(w \in \mathbb{U}) . \tag{1.4}
\end{equation*}
$$

Definition 1.2. The function $f(z)$, given by (1.1), is said to be a member of $\alpha-\delta \mathcal{P}_{\Sigma}(\rho)$, the class of α-bi-spirallike functions of order $\rho\left(|\alpha| \leq \frac{\pi}{2}, 0 \leq \rho<1\right)$, if each of the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad \Re\left(e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right)>\rho \cos \alpha \quad(z \in \mathbb{U}) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left(e^{i \alpha} \frac{w g^{\prime}(w)}{g(w)}\right)>\rho \cos \alpha \quad(w \in \mathbb{U}) . \tag{1.6}
\end{equation*}
$$

Furthermore, let \mathcal{P} be the class of analytic functions $p(z)$ of the form:

$$
p(z)=1+\sum_{k=1}^{\infty} c_{k} z^{k} \quad(z \in \mathbb{U})
$$

and satisfy $\Re(p(z))>0 \quad(z \in \mathbb{U})$. We shall need this class to describe the classes $\alpha-\mathcal{S P}_{\Sigma}^{\beta}$ and $\alpha-\mathcal{S P}_{\Sigma}(\rho)$.

As follow up of the work of Mishra and Soren [14], at present there is renewed interest in the study of the class Σ and its many new subclasses. For example see $[1,2,3,5,7,8,10,17,18,20,21,29,30,31]$. Many researchers are still working upon finding an upper bound for a_{n} for the functions in subclasses of Σ. However, not much was known about the bound of the general coefficients $a_{n}(n \geq 4)$ of subclasses of bi-univalent functions up until the publication of the article by Mishra and Soren [14]. See $[6,13,12,15,22,23,24,25,28]$. For a brief history on the developments regarding the class Σ see [26].

Motivated by the aforementioned work [14], in the present paper we have introduced two new subclasses of the function class Σ and we find estimates for $\left|a_{2}\right|,\left|a_{3}\right|$ and $\left|a_{4}\right|$ for functions, of the form (1.1), when $f \in \alpha-\mathcal{S P}_{\Sigma}^{\beta}$ and $\alpha-\mathcal{S P}_{\Sigma}(\rho)$.

2. Coefficient Bounds for the Class of Bi-spirallike Functions

We state and prove the following:
Theorem 2.1. Let the function $f(z)$, represented by the series (1.1), be in the class $\alpha-\mathcal{S P}_{\Sigma}^{\beta}\left(|\alpha| \leq \frac{\pi}{2}, 0 \leq \beta<1\right)$. Then

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
\beta \cos \left(\frac{\alpha}{\beta}\right), \quad 0 \leq \beta \leq \frac{1}{3} \tag{2.2}\\
\frac{4 \beta^{2}}{1+\beta} \cos \left(\frac{\alpha}{\beta}\right), \quad \frac{1}{3} \leq \beta<1
\end{array}\right.
$$

and

$$
\left|a_{4}\right| \leq \begin{cases}\frac{2 \beta}{3}\left(1-\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}} \sqrt{\cos (\alpha / \beta)}\right) \cos (\alpha / \beta), & 0 \leq \beta<\frac{3+\sqrt{73}}{32} \tag{2.3}\\ \frac{2 \beta}{3}\left(1+\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}} \sqrt{\cos (\alpha / \beta)}\right) \cos (\alpha / \beta), & \frac{3+\sqrt{73}}{32} \leq \beta<\frac{2}{5} \\ \frac{2 \beta}{3}\left(\frac{15 \beta}{5 \beta+4}+\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}} \sqrt{\cos (\alpha / \beta)}\right) \cos (\alpha / \beta), \quad \frac{2}{5} \leq \beta<1\end{cases}
$$

Proof. We write

$$
\begin{equation*}
f^{\prime}(z)=\frac{f(z)}{z} e^{-i \alpha} h(z) \quad\left(z \in \mathbb{U} ;-\beta \frac{\pi}{2}<\alpha<\beta \frac{\pi}{2}\right) \tag{2.4}
\end{equation*}
$$

where $h(z)$ is analytic in \mathbb{U} and satisfies

$$
h(0)=e^{i \alpha} \quad \text { and } \quad|\arg h(z)|<\beta \frac{\pi}{2} \quad(z \in \mathbb{U}) .
$$

It can be checked that the function $q(z)$ defined by:

$$
h(z)^{\frac{1}{\beta}}=\cos \left(\frac{\alpha}{\beta}\right) q(z)+i \sin \left(\frac{\alpha}{\beta}\right) \quad(z \in \mathbb{U})
$$

is a member of the class \mathcal{P}. Suppose that

$$
q(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) .
$$

By comparing coefficients in (2.4), we have

$$
\begin{gather*}
a_{2}=\beta c_{1} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right), \tag{2.5}\\
2 a_{3}-a_{2}^{2}=\beta c_{2} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\frac{\beta(\beta-1)}{2} c_{1}^{2} e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \tag{2.6}
\end{gather*}
$$

and

$$
\begin{align*}
3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}=\beta c_{3} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) & +\beta(\beta-1) c_{1} c_{2} e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
& +\frac{\beta(\beta-1)(\beta-2)}{6} c_{1}^{3} e^{-3 i\left(\frac{\alpha}{\beta}\right)} \cos ^{3}\left(\frac{\alpha}{\beta}\right) . \tag{2.7}
\end{align*}
$$

Similarly, we take

$$
\begin{equation*}
g^{\prime}(w)=\frac{g(w)}{w} e^{-i \alpha} H(w) \quad\left(w \in \mathbb{U} ;-\beta \frac{\pi}{2}<\alpha<\beta \frac{\pi}{2}\right) \tag{2.8}
\end{equation*}
$$

where $H(w)$ is analytic in \mathbb{U} and satisfies

$$
H(0)=e^{i \alpha} \quad \text { and } \quad|\arg H(w)|<\beta \frac{\pi}{2} \quad(w \in \mathbb{U}) .
$$

The function $p(w)$ defined by

$$
H(w)^{\frac{1}{\beta}}=\cos \left(\frac{\alpha}{\beta}\right) p(w)+i \sin \left(\frac{\alpha}{\beta}\right) \quad(w \in \mathbb{U})
$$

is a member of the class \mathcal{P}. If

$$
p(w)=1+l_{1} w+l_{2} w^{2}+\cdots \quad(w \in \mathbb{U})
$$

then again by comparing the coefficients in (2.8), we have the following:

$$
\begin{align*}
-a_{2} & =\beta l_{1} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \tag{2.9}\\
3 a_{2}^{2}-2 a_{3} & =\beta l_{2} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\frac{\beta(\beta-1)}{2} l_{1}^{2} e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \tag{2.10}
\end{align*}
$$

and
$-\left(10 a_{2}^{3}-12 a_{2} a_{3}+3 a_{4}\right)=\beta l_{3} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\beta(\beta-1) l_{1} l_{2} e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right)$

$$
\begin{equation*}
+\frac{\beta(\beta-1)(\beta-2)}{6} l_{1}^{3} e^{-3 i\left(\frac{\alpha}{\beta}\right)} \cos ^{3}\left(\frac{\alpha}{\beta}\right) . \tag{2.11}
\end{equation*}
$$

From (2.5) and (2.9), gives

$$
\begin{equation*}
l_{1}=-c_{1} . \tag{2.12}
\end{equation*}
$$

We shall obtain a refined estimate on $\left|c_{1}\right|$ for use in the estimates of $\left|a_{3}\right|$ and $\left|a_{4}\right|$. For this purpose we first add (2.6) with (2.10); then use the relations (2.12) and get the following:

$$
2 a_{2}^{2}=\beta\left(c_{2}+l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\frac{\beta(\beta-1)}{2}\left(c_{1}^{2}+l_{1}^{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) .
$$

Putting $a_{2}=\beta c_{1} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)$ from (2.5), we have after simplification:

$$
\begin{equation*}
c_{1}^{2}=\frac{c_{2}+l_{2}}{(1+\beta) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)} . \tag{2.13}
\end{equation*}
$$

By applying the familiar inequalities $\left|c_{2}\right| \leq 2$ and $\left|l_{2}\right| \leq 2$ we get:

$$
\begin{equation*}
\left|c_{1}\right| \leq \sqrt{\frac{4}{(1+\beta) \cos \left(\frac{\alpha}{\beta}\right)}}=\frac{2}{\sqrt{(1+\beta) \cos \left(\frac{\alpha}{\beta}\right)}} \tag{2.14}
\end{equation*}
$$

and

$$
\left|a_{2}\right| \leq \beta\left|c_{1}\right| \cos (\alpha / \beta)=\frac{2 \beta}{\sqrt{(1+\beta)}} \sqrt{\cos (\alpha / \beta)}
$$

We have thus obtained (2.1).
We next find a bound on $\left|a_{3}\right|$. For this we substract (2.10) from (2.6) and get

$$
4 a_{3}=4 a_{2}^{2}+\beta\left(c_{2}-l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\frac{\beta(\beta-1)}{2}\left(c_{1}^{2}-l_{1}^{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) .
$$

The relation $c_{1}^{2}=l_{1}^{2}$ from (2.12), reduces the above expression to

$$
\begin{equation*}
4 a_{3}=4 a_{2}^{2}+\beta\left(c_{2}-l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) . \tag{2.15}
\end{equation*}
$$

Next putting that $a_{2}=\beta c_{1} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)$ and using (2.13), we obtain

$$
\begin{aligned}
4 a_{3}= & 4 \beta^{2} c_{1}^{2} e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right)+\beta\left(c_{2}-l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
= & 4 \beta^{2}\left(\frac{c_{2}+l_{2}}{(1+\beta) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
& +\beta\left(c_{2}-l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
= & \frac{\beta}{1+\beta}\left[(5 \beta+1) c_{2}+(3 \beta-1) l_{2}\right] e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

Therefore, the inequalities $\left|c_{2}\right| \leq 2$ and $\left|l_{2}\right| \leq 2$ give the following:

$$
4\left|a_{3}\right| \leq\left\{\begin{array}{l}
\frac{2 \beta}{1+\beta}(5 \beta+1+1-3 \beta) \cos \left(\frac{\alpha}{\beta}\right)=4 \beta \cos \left(\frac{\alpha}{\beta}\right), \quad 0 \leq \beta \leq \frac{1}{3} \\
\frac{2 \beta}{1+\beta}(5 \beta+1+3 \beta-1) \cos \left(\frac{\alpha}{\beta}\right)=\frac{16 \beta^{2}}{1+\beta} \cos \left(\frac{\alpha}{\beta}\right), \quad \frac{1}{3} \leq \beta<1
\end{array}\right.
$$

which simplifies to:

$$
\left|a_{3}\right| \leq\left\{\begin{array}{l}
\beta \cos \left(\frac{\alpha}{\beta}\right), \quad 0 \leq \beta \leq \frac{1}{3} \\
\frac{4 \beta^{2}}{1+\beta} \cos \left(\frac{\alpha}{\beta}\right), \quad \frac{1}{3} \leq \beta<1 .
\end{array}\right.
$$

This is precisely the assertion of (2.2).
We shall next find an estimate on $\left|a_{4}\right|$. At first we shall derive a relation connecting $c_{1}, c_{2}, c_{3}, l_{2}$ and l_{3}. To this end, we first add the equations (2.7) and (2.11) and get

$$
\begin{array}{r}
-9 a_{2}^{3}+9 a_{2} a_{3}=\beta\left(c_{3}+l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\beta(\beta-1)\left(c_{1} c_{2}+l_{1} l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
+\frac{\beta(\beta-1)(\beta-2)}{6}\left(c_{1}^{3}+l_{1}^{3}\right) e^{-3 i\left(\frac{\alpha}{\beta}\right)} \cos ^{3}\left(\frac{\alpha}{\beta}\right) .
\end{array}
$$

By putting $l_{1}=-c_{1}$ the above expression reduces to the following:

$$
\begin{equation*}
-9 a_{2}^{3}+9 a_{2} a_{3}=\beta\left(c_{3}+l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\beta(\beta-1) c_{1}\left(c_{2}-l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) . \tag{2.16}
\end{equation*}
$$

Substituting $a_{3}=a_{2}^{2}+\frac{\beta}{4}\left(c_{2}-l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)$ from (2.15) into (2.16) we get after simplification:

$$
\begin{aligned}
\frac{9 \beta a_{2}}{4}\left(c_{2}-l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)= & \beta\left(c_{3}+l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
& +\beta(\beta-1) c_{1}\left(c_{2}-l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

Since $a_{2}=\beta c_{1} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)$, (see 2.5) we have

$$
\begin{aligned}
\frac{9 \beta^{2}}{4} c_{1}\left(c_{2}-l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right)= & \beta\left(c_{3}+l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
& +\beta(\beta-1) c_{1}\left(c_{2}-l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

Or equivalently:

$$
\begin{equation*}
c_{1}\left(c_{2}-l_{2}\right)=\frac{4\left(c_{3}+l_{3}\right)}{5 \beta+4} e^{i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) . \tag{2.17}
\end{equation*}
$$

We wish to express a_{4} in terms of the first three coefficients of $q(z)$ and $p(w)$. Now substracting (2.11) from (2.7), we get

$$
\begin{aligned}
& \quad 6 a_{4}=-11 a_{2}^{3}+15 a_{2} a_{3}+\beta\left(c_{3}-l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
& +\beta(\beta-1)\left(c_{1} c_{2}-l_{1} l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right)+\frac{\beta(\beta-1)(\beta-2)}{6}\left(c_{1}^{3}-l_{1}^{3}\right) e^{-3 i\left(\frac{\alpha}{\beta}\right)} \cos ^{3}\left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

Observing that $l_{1}=-c_{1}$ we have $c_{1}^{3}-l_{1}^{3}=2 c_{1}^{3}$ and therefore

$$
\begin{aligned}
6 a_{4}= & -9 a_{2}^{3}+9 a_{2} a_{3}-2 a_{2}^{3}+6 a_{2} a_{3}+\beta\left(c_{3}-l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
& +\beta(\beta-1) c_{1}\left(c_{2}+l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
& +\frac{\beta(\beta-1)(\beta-2)}{3} c_{1}^{3} e^{-3 i\left(\frac{\alpha}{\beta}\right)} \cos ^{3}\left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

We replace $-9 a_{2}^{3}+9 a_{2} a_{3}$ by the right hand side of (2.16), put $a_{3}=\beta^{2} c_{1}^{2} e^{-2 i\left(\frac{\alpha}{\beta}\right)}$ $\cos ^{2}\left(\frac{\alpha}{\beta}\right)+\frac{\beta}{4}\left(c_{2}-l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)($ see $(2.15))$ and $a_{2}=\beta c_{1} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)$.

This gives

$$
\begin{aligned}
6 a_{4}= & \beta\left(c_{3}+l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
& +\beta(\beta-1) c_{1}\left(c_{2}-l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right)-2 \beta^{3} c_{1}^{3} e^{-3 i\left(\frac{\alpha}{\beta}\right)} \cos ^{3}\left(\frac{\alpha}{\beta}\right) \\
& +6 \beta c_{1} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)\left(\beta^{2} c_{1}^{2} e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right)+\frac{\beta}{4}\left(c_{2}-l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)\right) \\
& +\beta\left(c_{3}-l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\beta(\beta-1) c_{1}\left(c_{2}+l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
& +\frac{\beta(\beta-1)(\beta-2)}{3} c_{1}^{3} e^{-3 i\left(\frac{\alpha}{\beta}\right)} \cos ^{3}\left(\frac{\alpha}{\beta}\right) \\
= & 2 \beta c_{3} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\frac{\beta(5 \beta-2)}{2} c_{1}\left(c_{2}-l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
& +\beta(\beta-1) c_{1}\left(c_{2}+l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right)+\frac{13 \beta^{3}-3 \beta^{2}+2 \beta}{3} c_{1}^{3} e^{-3 i\left(\frac{\alpha}{\beta}\right)} \cos ^{3}\left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

Next, replacing $c_{1}\left(c_{2}-l_{2}\right)$ by the expression in the right hand side of (2.17) and c_{1}^{2} by (2.13) we finally get

$$
\begin{aligned}
6 a_{4}= & 2 \beta c_{3} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\frac{\beta(5 \beta-2)}{2} \frac{4\left(c_{3}+l_{3}\right)}{5 \beta+4} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
& +\beta(\beta-1) c_{1}\left(c_{2}+l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
& +\frac{13 \beta^{3}-3 \beta^{2}+2 \beta}{3} c_{1} \frac{\left(c_{2}+l_{2}\right)}{1+\beta} e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
= & 2 \beta c_{3} e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)+\frac{2 \beta(5 \beta-2)}{5 \beta+4}\left(c_{3}+l_{3}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) \\
& +\frac{16 \beta^{3}-3 \beta^{2}-\beta}{3(1+\beta)} c_{1}\left(c_{2}+l_{2}\right) e^{-2 i\left(\frac{\alpha}{\beta}\right)} \cos ^{2}\left(\frac{\alpha}{\beta}\right) \\
= & \beta\left[\frac{4(5 \beta+1)}{5 \beta+4} c_{3}+\frac{2(5 \beta-2)}{5 \beta+4} l_{3}\right. \\
& \left.+\frac{16 \beta^{2}-3 \beta-1}{3(1+\beta)} c_{1}\left(c_{2}+l_{2}\right) e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right)\right] e^{-i\left(\frac{\alpha}{\beta}\right)} \cos \left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

This gives

$$
\begin{aligned}
\left|a_{4}\right| \leq \frac{\beta}{6}\left\{\left|\frac{4(5 \beta+1)}{5 \beta+4}\right|\left|c_{3}\right|\right. & +\left|\frac{2(5 \beta-2)}{5 \beta+4}\right|\left|l_{3}\right| \\
& \left.+\left|\frac{16 \beta^{2}-3 \beta-1}{3(1+\beta)}\right|\left|c_{1}\right|\left|\left(c_{2}+l_{2}\right)\right| \cos \left(\frac{\alpha}{\beta}\right)\right\} \cos \left(\frac{\alpha}{\beta}\right) .
\end{aligned}
$$

Therefore,

$$
\left|a_{4}\right| \leq \begin{cases}\frac{2 \beta}{3}\left(1-\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}} \sqrt{\cos (\alpha / \beta)}\right) \cos (\alpha / \beta), & 0 \leq \beta<\frac{3+\sqrt{73}}{32} \\ \frac{2 \beta}{3}\left(1+\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}} \sqrt{\cos (\alpha / \beta)}\right) \cos (\alpha / \beta), & \frac{3+\sqrt{73}}{32} \leq \beta<\frac{2}{5} \\ \frac{2 \beta}{3}\left(\frac{15 \beta}{5 \beta+4}+\frac{2}{3} \frac{16 \beta^{2}-3 \beta-1}{\sqrt[3]{1+\beta}} \sqrt{\cos (\alpha / \beta)}\right) \cos (\alpha / \beta), \quad \quad \frac{2}{5} \leq \beta<1\end{cases}
$$

We get the assertion (2.3). The proof of Theorem 2.1 is, thus, completed.
Remark 2.2. Taking $\alpha=0$ in the above Theorem 2.1, we readily arrive at Mishra and Soren [14] of Theorem 2.1.
Theorem 2.3. Let $f(z)$, given by (1.1), be in the class $\mathcal{S P}_{\Sigma}^{\alpha}(\rho)\left(|\alpha| \leq \frac{\pi}{2}, 0 \leq \rho<1\right)$. Then

$$
\begin{gather*}
\left|a_{2}\right| \leq \sqrt{2(1-\rho) \cos \alpha} \tag{2.18}\\
\left|a_{3}\right| \leq 2(1-\rho) \cos \alpha \tag{2.19}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|a_{4}\right| \leq \frac{2(1-\rho) \cos \alpha}{3}[1+13 \sqrt{2(1-\rho) \cos \alpha}] \tag{2.20}
\end{equation*}
$$

Proof. Let $f \in \mathcal{S P}_{\Sigma}^{\alpha}(\rho)$. Then by Definition 1.2, we have

$$
\begin{equation*}
e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}=Q_{1}(z) \cos \alpha+i \sin \alpha \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{i \alpha} \frac{w g^{\prime}(w)}{g(w)}=P_{1}(w) \cos \alpha+i \sin \alpha \tag{2.22}
\end{equation*}
$$

respectively, where $\Re\left(Q_{1}(z)\right)>\rho$,

$$
Q_{1}(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U})
$$

and $\Re\left(P_{1}(w)\right)>\rho$,

$$
P_{1}(w)=1+l_{1} w+l_{2} w^{2}+\cdots \quad(w \in \mathbb{U})
$$

As in the proof of Theorem 2.1, by suitably comparing coefficients in (2.21) and (2.22) we have

$$
\begin{equation*}
a_{2} e^{i \alpha}=c_{1} \cos \alpha \tag{2.23}
\end{equation*}
$$

$$
\begin{gather*}
\left(2 a_{3}-a_{2}^{2}\right) e^{i \alpha}=c_{2} \cos \alpha, \tag{2.24}\\
\left(3 a_{4}-3 a_{2} a_{3}+a_{2}^{3}\right) e^{i \alpha}=c_{3} \cos \alpha \tag{2.25}
\end{gather*}
$$

and

$$
\begin{gather*}
-a_{2} e^{i \alpha}=l_{1} \cos \alpha, \tag{2.26}\\
\left(3 a_{2}^{2}-2 a_{3}\right) e^{i \alpha}=l_{2} \cos \alpha, \tag{2.27}\\
-\left(10 a_{2}^{3}-12 a_{2} a_{3}+3 a_{4}\right) e^{i \alpha}=l_{3} \cos \alpha . \tag{2.28}
\end{gather*}
$$

In order to express c_{1} interms of c_{2} and l_{2} we first add (2.24) and (2.27) and get

$$
\begin{equation*}
2 a_{2}^{2}=\left(c_{2}+l_{2}\right) \frac{\cos \alpha}{e^{i \alpha}} . \tag{2.29}
\end{equation*}
$$

Again putting $a_{2} e^{i \alpha}=c_{1} \cos \alpha$ from (2.23) we have

$$
2 c_{1}^{2} \frac{\cos ^{2} \alpha}{e^{2 i \alpha}}=\left(c_{2}+l_{2}\right) \frac{\cos \alpha}{e^{i \alpha}} .
$$

Or equivalently:

$$
\begin{equation*}
c_{1}^{2}=\left(c_{2}+l_{2}\right) \frac{e^{i \alpha}}{2 \cos \alpha} . \tag{2.30}
\end{equation*}
$$

The familiar inequalities $\left|c_{2}\right| \leq 2(1-\rho), \quad\left|l_{2}\right| \leq 2(1-\rho)$ yield

$$
\left|c_{1}^{2}\right| \leq \frac{4(1-\rho)}{2 \cos \alpha}=\frac{2(1-\rho)}{\cos \alpha}
$$

which implies that

$$
\begin{equation*}
\left|c_{1}\right| \leq \sqrt{\frac{2(1-\rho)}{\cos \alpha}} \tag{2.31}
\end{equation*}
$$

and

$$
\begin{aligned}
\left|a_{2}\right| & \leq\left|c_{1}\right| \cos \alpha \\
& \leq \sqrt{\frac{2(1-\rho)}{\cos \alpha}} \cos \alpha=\sqrt{2(1-\rho) \cos \alpha}
\end{aligned}
$$

This proves (2.18).
Following the lines of proof of Theorem 2.1, with appropriate changes, we get that

$$
4 a_{3}=\left(3 c_{2}+l_{2}\right) \frac{\cos \alpha}{e^{i \alpha}} .
$$

The inequalities $\left|c_{2}\right| \leq 2(1-\rho), \quad\left|l_{2}\right| \leq 2(1-\rho)$, yield

$$
\begin{equation*}
\left|a_{3}\right| \leq 2(1-\rho) \cos \alpha \tag{2.32}
\end{equation*}
$$

This is precisely the estimate (2.19).
We shall next find an estimate on $\left|a_{4}\right|$. By substracting (2.28) from (2.25) we get

$$
6 a_{4}=-11 a_{2}^{3}+15 a_{2} a_{3}+\left(c_{3}-l_{3}\right) \frac{\cos \alpha}{e^{i \alpha}}
$$

A substitution of the value of a_{2} from the relation (2.23) gives

$$
6 a_{4}=-11 c_{1}^{3} \frac{\cos ^{3} \alpha}{e^{3 i \alpha}}+15 c_{1} \frac{\cos \alpha}{e^{i \alpha}} a_{3}+\left(c_{3}-l_{3}\right) \frac{\cos \alpha}{e^{i \alpha}}
$$

Therefore, using the inequalities $\left|c_{3}\right| \leq 2(1-\rho), \quad\left|l_{3}\right| \leq 2(1-\rho)$, the estimate for $\left|c_{1}\right|$ from (2.31) and the estimate for $\left|a_{3}\right|$ from (2.32), we get

$$
\begin{aligned}
6\left|a_{4}\right| \leq & 11\left|c_{1}^{3}\right| \cos ^{3} \alpha+15\left|c_{1}\right| \cos \alpha\left|a_{3}\right|+\left|c_{3}-l_{3}\right| \cos \alpha \\
\leq & 11 \cos ^{3} \alpha \frac{2(1-\rho)}{\cos \alpha} \sqrt{\frac{2(1-\rho)}{\cos \alpha}} \\
& +15 \cos \alpha \sqrt{\frac{2(1-\rho)}{\cos \alpha}} 2(1-\rho) \cos \alpha+4(1-\rho) \cos \alpha \\
\leq & 4(1-\rho) \cos \alpha[1+13 \sqrt{2(1-\rho) \cos \alpha}] .
\end{aligned}
$$

Or equivalently,

$$
\left|a_{4}\right| \leq \frac{2(1-\rho) \cos \alpha}{3}[1+13 \sqrt{2(1-\rho) \cos \alpha}]
$$

We get the assertion (2.20). This completes the proof of the Theorem 2.3.
Remark 2.4. Taking $\alpha=0$ in the above Theorem 2.3, we readily arrive at Mishra and Soren [14] of Theorem 2.3.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent function Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), 344-351.
[2] Ş. Altinkaya and S. Yalçin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, J. Funct. Spaces, (2015), Art. ID 145242, 5 pp .
[3] M. Çağlar, H. Orhan and N. Yağmur, Coefficient bounds for new subclasses of biunivalent functions, Filomat, 27(2013), 1165-1171.
[4] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften 259, Springer, New York, 1983.
[5] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
[6] J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., (2013), Art. ID 190560, 4 pp.
[7] S. S. Kumar, V. Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Tamsui Oxf. J. Inf. Math. Sci., 29(2013), 487-504.
[8] S. K. Lee, V. Ravichandran and S. Supramaniam, Initial coefficients of bi-univalent functions, Abs. Appl. Anal., (2014), Article ID 640856, 6 pp.
[9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
[10] X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Int. Math. Forum, $\mathbf{7}$ (2012), 1495-1504.
[11] R. J. Libera, Univalent α-spiral functions, Canad. J. Math., 19(1967), 449-456.
[12] A. K. Mishra and S. Barik, Estimation for initial coefficients of bi-univalent λ-convex analytic functions in the unit disc, J. Class. Anal., 7 (2015), 73-81.
[13] A. K. Mishra and S. Barik, Estimation of initial coefficients of certain λ-bi-starlike analytic functions, Asian-Eur. J. Math., 9(2016), 1650066, 14 pp.
[14] A. K. Mishra and M. M. Soren, Coefficient bounds for bi-starlike analytic functions, Bull. Belg. Math. Soc. Simon Stevin, 21(2014), 157-167.
[15] G. Murugusundaramoorthy and T. Bulboacă, Estimate for initial MacLaurin coefficients of certain subclasses of bi-univalent functions of complex order associated with the Hohlov operator, Ann. Univ. Paedagog. Crac. Stud. Math., 17 (2018), 27-36.
[16] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Ration Mech. Anal., 32(1969), 100-112.
[17] Z. G. Peng and Q. Q. Han, On the coefficients of several classes of bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.), 34(2014), 228-240.
[18] S. Siregar and S. Raman, Certain subclasses of analytic and bi-univalent functions involving double zeta functions, Int. J. Adv. Sci. Eng. Inform. Tech., 2(2012), 16-18.
[19] L. Špaček, Contributions à la thèorie des fonctions univalentes, Časopis Pěst. Mat.Fys., 62(1933), 12-19.
[20] H. M. Srivastava, Some inequalities and other results associated with certain subclasses of univalent and bi-univalent analytic functions, Nonlinear Analysis, 607-630, Springer Optim. Appl. 68, Springer, Berlin, New York and Heidelberg, 2012.
[21] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845.
[22] H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber Polynomial Coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iran. Math. Soc., 44(2018), 149-157.
[23] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28(2017), 693-706.
[24] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for a general subclass of analytic and bi-univalent functions of the Ma-Minda type, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 112(2018), 1157-1168.
[25] H. M. Srivastava, S. B. Joshi, S. S. Joshi, H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5(2016), 250258.
[26] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
[27] H. M. Srivastava and S. Owa,(Eds.) Current topics in analytic function theory, World Scientific Publishing Co., Singapore, New Jersey, London and Hong Kong, 1992.
[28] H. M. Srivastava, F. M. Sarkar and H. Ö. Güney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32(2018), 1313-1322.
[29] H.-G. Xiao and Q.-H. Xu, Coefficient estimates for the generalized subclass of analytic and bi-univalent functions, Eur. J. Pure Appl. Math., 10(2017), 638-644.
[30] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994.
[31] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461-11465.

