DOI QR코드

DOI QR Code

On Zeros and Fixed Points of Differences of Meromorphic Functions

  • Zhang, Guowei (School of Mathematics and Statistics, Anyang Normal University) ;
  • Qi, Jianming (Department of Mathematics and Physics, Shanghai Dianji University) ;
  • Zheng, Yiyuan (Class 2015, National Economy Major, Wenlan School of Business, Zhongnan University of Economics and Law)
  • 투고 : 2017.12.13
  • 심사 : 2018.10.16
  • 발행 : 2018.12.23

초록

In this paper, we give some results on the zeros and fixed points of the difference and the divided difference of transcendental meromorphic functions. This improves on results of Langley.

키워드

참고문헌

  1. W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Cambridge Philos. Soc., 142(2007), 133-147. https://doi.org/10.1017/S0305004106009777
  2. Z.-X. Chen and K. H. Shon, On zeros and fixed points of differences of meromorphic function, J. Math. Anal. Appl., 344(2008), 373-383. https://doi.org/10.1016/j.jmaa.2008.02.048
  3. Z.-X. Chen, On the rate of growth of meromorphic solutions of higher order linear differential equations, Acta Mathematica Sinca, 42(3)(1999), 551-558.
  4. J. K. Langley, Value distribution of differences of meromorphic functions, Rocky Mountain J. Math., 41(1)(2011), 275-291. https://doi.org/10.1216/RMJ-2011-41-1-275
  5. K. Ishizaki and N. Yanagihara, Wiman-Valiron method for difference equations, Nagoya Math. J., 175(2004), 75-102. https://doi.org/10.1017/S0027763000008916
  6. G. Gundersen, Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2), 37(1)(1988), 88-104.
  7. W. K. Hayman, Meromorphic Function, Clarendon Press, Oxford, 1964.
  8. J. M. Whittaker, Interpolatory Function Theory, Cambridge Tracts in Math. and Mth. Phys. 33, Cambridge University Press, 1964.
  9. H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, China, 2003.
  10. L. Yang, Value Distribution Theory and New Research, Science Press, Beijing, 1982.
  11. W. K. Hayman, Slowly growing integral and subharmonic functions, Comment Math. Helv., 34(1960), 75-84. https://doi.org/10.1007/BF02565929