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Abstract. In this paper, we give some results on the zeros and fixed points of the differ-

ence and the divided difference of transcendental meromorphic functions. This improves

on results of Langley.

1. Introduction

We assume that the reader is familiar with the basic notions of Nevanlinna’s
value distribution theory (see [7, 9, 10]). Let f be a function that is transcendental
and meromorphic in the plane. The forward differences ∆nf are defined in the
standard way [8] by

∆f(z) = f(z + 1)− f(z), ∆n+1f(z) = ∆nf(z + 1)−∆nf(z)(1.1)
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and the divided difference is defined by

Gn(z) =
∆nf(z)

f(z)
.(1.2)

Recently, a number of papers focus on complex difference equations and differ-
ences analogues of Nevanlinna’s theory. Bergweiler and Langley [1] firstly investi-

gated the existed of zeros of ∆f(z) and ∆f(z)
f(z) , and obtained many profound results.

The results may be viewed as discrete analogues of the following existing theorem
on the zeros of f ′.

Theorem A.([BL]) Let f be transcendental and meromorphic in the plane with

lim infr→∞
T (r,f)
r = 0. Then f ′ has infinitely many zeros.

In [1], Bergweiler and Langley proved the following theorems.

Theorem B.([1]) Let n ∈ N and f be transcendental entire function of order σ(f) =
σ < 1

2 and Gn(z) is defined by (1.2). If Gn is transcendental, then Gn(z) has
infinitely many zeros. In particular, if f has order less than min[ 1

n ,
1
2 ], then Gn(z)

is transcendental and has infinitely many zeros.

For the first difference ∆f(z) and divided difference ∆f(z)
f(z) , they also have the

following theorem.

Theorem C.([1]) Let f be a function transcendental and meromorphic function in

the plane which satisfies limr→∞
T (r,f)
r = 0, then ∆f(z), ∆f(z)

f(z) are both transcen-

dental.

But for some n ≥ 2, Gn(z) fails to be transcendental if f is an entire function
of order less than 1

2 ; see [5].
In [4], Langley extended Theorem A. In fact, he got the following theorem.

Theorem D.([4]) Let n ∈ N and f be a transcendental meromorphic function of
order of growth σ(f) = σ < 1 in the plane and assume that Gn(z) as defined by
(1.2) is transcendental.

(1) If Gn(z) has lower order µ < α < 1/2, which holds in particular if σ < 1/2,
then δ(0, Gn(z)) ≤ 1− cosπα or δ(∞, f) ≤ µ

α .

(2) If σ = 1/2, then either Gn(z) has infinitely many zeros or δ(∞, f) < 1.

(3) If f is entire and σ < 1
2 + δ0, then Gn(z) has infinitely many zeros: here δ0

is a small positive absolute constant.

In [2], Chen and Shon studied the fixed points of differences and divided differ-
ences of meromorphic functions and got some results. One of them is the following.

Theorem E.([2]) Let n ∈ N, c ∈ C and f be a function transcendental meromorphic

function of order of growth σ(f) = σ < 1. If Gn(z) = ∆nf(z)
f(z) is transcendental,

then Gn(z) has infinitely many fixed points.
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Comparing Theorem B with Theorem D (1), we know that the latter give a pre-
cise estimation of the zeros of Gn(z). For the fixed points of Gn(z), can we estimate
it precisely like Theorem D (1)? In fact, Theorem E is extended as following.

Theorem 1. Let n ∈ N, let f be a transcendental and meromorphic function of or-
der σ(f) < 1 in the plane and assume that Gn(z) as defined by (1.2) is transcenden-
tal. Then 2δ(0, Gn(z)−z)+δ(0, Gn(z)) ≤ 2. Furthermore, if Gn(z) has lower order
µ < α < 1

2 , which holds in particular if σ(f) < 1
2 , and δ(0, Gn(z)) > 1 − cosπα,

then δ(0, Gn(z)− z) < 1
2 (1 + cosπα) and δ(∞, f) ≤ µ

α .

In Theorem D, there is a condition that Gn(z) is transcendental. Can we remove
it for the case (2) and (3)? The question is studied and the following results are
obtained.

Theorem 2. Let n be odd, let f be a transcendental meromorphic function of order
σ(f) = 1

2 and f has finite many poles in the plane, Gn(z) is defined by (1.2). Then
Gn(z) has infinitely many zeros.

Theorem 3. Let n ∈ N, let f be a transcendental meromorphic function of order
σ(f) < 1

2 + δ0 and σ(f) 6= n−k
n , k ∈ N, n( 1

2 − δ0) < k < n, where δ0 is a small
positive absolute constant, and Gn(z) is defined by (1.2). Then Gn(z) has infinitely
many zeros.

The final theorem from [1] showed that for transcendental meromorphic function
satisfying the very strong growth restriction T (r, f) = O(log r)2 as r → ∞, either
the first differential or the first divided difference has infinitely many zeros. Langley
improved it in [4] as following.

Theorem F.([4]) Let f be a transcendental meromorphic function in the plane of
order less than 1/6, and define G = ∆f/f . Then at least one of G and ∆f has
infinitely many zeros.

Obviously, we have the following corollary by Theorem A, C and E.

Corollary 1. Under the hypothesis of Theorem F, G has infinity many fixed points.

Thus, there exists a natural question that how about that fixed points of ∆f
under the hypothesis of Theorem F. It deserves for further study.

2. Lemmas for the Proofs of Theorems

Remark 1. Following Hayman ([11], p75-p76), we define an ε−set to be a countable
union of open discs not containing the origin and subtending angles at the origin
whose sum is finite. If E is an ε−set, then the set of r ≥ 1 for which the circle S(0, r)
meets E has finite logarithmic measure, and for almost all real θ the intersection of
E with the ray arg z = θ is bounded.

Lemma 1.([1]) Let n ∈ N and f be transcendental and meromorphic of order less
than 1 in the plane.Then there exists an ε− set En such that

∆nf(z) ∼ f (n)(z)
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as z →∞ in C \ En.

Lemma 2.([6]) Let f be a function transcendental and meromorphic function with
order σ(f) = σ < ∞, H = {(k1, j1), (k2, j2), · · · , (kq, jq)} be a finite set of distinct
pairs of integers that satisfy ki > ji ≥ 0, for i = 1, · · · , q and let ε > 0 be a given
constant. Then there exists a set E ⊂ (1,∞) with finite logarithmic measure such
that for all z satisfying |z| 6∈ E ∪ [0, 1] and for all (k, j) ∈ H, we have∣∣∣∣f (k)(z)

f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε).

Lemma 3.([9]) Suppose that f is a meromorphic function in the complex plane,
and a1(z), a2(z) and a3(z) are three distinct small functions of f(z). Then

T (r, f) <

3∑
j=1

N

(
r,

1

f − aj(z)

)
+ S(r, f).

Lemma 4.([3]) Suppose that f(z) = g(z)
d(z) is a meromorphic function with σ(f) = σ,

where g(z) is an entire function and d(z) is a polynomial. Then there exists a
sequence {rj}, rj → ∞, such that for all z satisfying |z| = rj , |g(z)| = M(rj , g),
when j sufficiently large, we have

f (n)(z)

f(z)
=

(
υg(z)

z

)n
(1 + o(1)), n ≥ 1,

and

σ(f) = lim
j→∞

log υg(rj)

log rj
.

3. Proof of Theorems

Proof of Theorem 1. Assume n, c, σ, f,Gn(z) are as in the hypotheses. Set
G∗n(z) = Gn(z) − z, then σ(G∗n(z)) = σ(Gn(z)) ≤ σ(f) < 1, G∗n is transcendental.
By Lemma 1, there exists an ε− set En, such that, as z →∞ in C\En,

Gn(z) =
∆nf(z)

f(z)
∼ f (n)(z)

f(z)
,(3.1)

where En contains all zeros and poles of Gn(z). So, there exists a subset F1 ⊂ (1,∞)
of finite logarithmic measure such that for large |z| = r not in F1, z 6∈ En and

G∗n(z) ∼ f (n)(z)

f(z)
− z.(3.2)
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By Lemma 2, for any given ε(0 < 2ε < 1− σ), there exists a subset F2 ⊂ (1,∞) of
finite logarithmic measure such that for large |z| = r not in F2,∣∣∣∣f (n)(z)

f(z)

∣∣∣∣ ≤ |z|n(σ−1+ε).(3.3)

Set an ε− set E∗n consists of all zeros and poles of G∗n(z), then there exists a subset
F3 ⊂ (1,∞) of finite logarithmic measure such that if z ∈ E∗n, then |z| = r ∈ F3.
Thus, by (3.2) and (3.3), we see that for large |z| = r 6∈ [0, 1] ∪ F1 ∪ F2 ∪ F3, G∗n(z)
has no zero and pole on |z| = r, and

|G∗n(z) + z| =
∣∣∣∣f (n)(z)

f(z)
(1 + o(1))

∣∣∣∣ ≤ |z|ε < |G∗n(z)|+ |z|(3.4)

holds on |z| = r. Applying the Rouché’s theorem to function z and G∗n(z), we
obtain that

n

(
r,

1

G∗n

)
− n (r,G∗n) = n

(
r,

1

z

)
− n(r, z) = 1.(3.5)

Applying Lemma 3 (Generation of second fundamental theorem) to function Gn(z),
we have

T (r,Gn(z)) < N

(
r,

1

Gn(z)

)
+N

(
r,

1

Gn(z)− z

)
(3.6)

+N(r,Gn(z)) + S(r,Gn(z)).

Since N(r,Gn(z)) = N(r,G∗n(z)), T (r,G∗n(z)) = T (r,Gn(z)) + S(r,Gn), by (3.5)
and (3.6), we have

T (r,G∗n(z)) < N

(
r,

1

Gn(z)

)
+ 2N

(
r,

1

G∗n(z)

)
+ S(r,Gn(z)).(3.7)

Thus, by the definition of deficiency, we have

2δ(0, G∗n(z)) + δ(0, Gn(z)) ≤ 2.(3.8)

Assume further that δ(0, Gn) > 1−cosπα and by the proof of Theorem D(1)(see[4]),
we have

δ(0, G∗n) <
1

2
(1 + cosπα), δ(∞, f) >

µ

α
. 2

Proof of Theorem 2. Since f is a transcendental meromorphic function of order

of growth σ(f) = 1
2 and f has finite many poles, we set f(z) = g(z)

d(z) , where g(z)

is an entire function and d(z) is a polynomial. By Lemma 1, we know that there
exists an ε− set En, such that

∆nf(z) ∼ f (n)(z)(3.9)
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as z →∞ in C \En. By Lemma 4, there exists a sequence {rj}, rj →∞, such that
for all z satisfying |z| = rj , |g(z)| = M(rj , g), when j sufficiently large, we have

f (n)(z)

f(z)
=

(
υg(rj)

z

)n
(1 + o(1)), n ≥ 1,(3.10)

σ(f) = lim
j→∞

log υg(rj)

log rj
,(3.11)

where υg(r) is the central index of g(z). By (3.10) and (3.11), we have

Gn(z) =

(
υg(rj)

z

)n
(1 + o(1))(3.12)

for the sequence {rj}, rj → ∞. Assume that Gn(z) is a rational function. Set
H = {|z| = r : r ∈ En}. Then by Remark 1, H is of finite logarithmic measure. Set
the logarithmic measure of H by lm(H) = log κ <∞, then for the above sequence
{rj}, there is a point r′j ∈ [rj , (1 + κ)rj ]\H. Since

log υg(r
′
j)

log r′j
≥ log υg(rj)

log[(1 + κ)rj ]
=

log υg(rj)

log rj

[
1 + log(1+κ)

log rj

] .(3.13)

We have

σ(f) = lim
r′j→∞

log υg(r
′
j)

log r′j
.(3.14)

By (3.14), for any given ε(0 < ε < 1− σ), we get that for sufficiently large j,

(r′j)
(σ−1−ε)n ≤

(
υg(r

′
j)

r′j

)n
≤ (r′j)

(σ−1+ε)n.(3.15)

Since (σ − 1 + ε)n < 0 and Gn(z) is rational function, by (3.12) and (3.15), we can
deduce that, as z →∞,

Gn(z) ∼ βz−k(3.16)

where β 6= 0 is a constant and k is a positive integer. Since ε is arbitrary, by (3.13),
(3.15) and (3.16), we have

σ = 1− k

n
=

1

2
.(3.17)

Thus, n = 2k. Since k is a positive integer, n is even, it is contradicts the hypothesis.
Hence, Gn(z) is transcendental. Since the poles of f is finite, we have δ(∞, f) = 1.
By Theorem D(2), Gn(z) has infinitely many zeros. 2

Proof of Theorem 3. Using the Wiman-Valiron theory and by the same argument
of the proof of Theorem 2, we can prove it. 2
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