Figure 1. Schematic diagram showing the putative domain organization of CP2c. Constructed regions for structural studies in this study are illustrated by gray bars. TAD, transactivation domain; BD, basic domain; TD, tetramerization domain.
Figure 2. 2D-[1H/15N]-TROSY spectrum of CP2c-TD (0.1 mM). Inset shows its far-UV CD spectrum obtained with 20 μM sample.
Figure 3. Gel-filtration profiles of the purified Elf1D at various concentrations. Inset shows the elution profiles of separated peak-1 and peak-2 fractions.
Figure 4. Monitoring of zinc binding to Elf1D. (A) Far-UV CD spectra of Elf1D (20 μM) in the absence (black) and presence of 2 equimolar zinc (red). (B) 2D-[1H/15N]-TROSY spectra of Elf1D (150 μM) in the absence (black) and presence of 2 equimoloar zinc (green). (C) Gel-filtration elution profiles of Elf1D (70 μM) in the absence (solid line) and presence of 2 equimolar zinc (dashed line for peak-1 fraction and dotted line for peak-2 fraction).
Figure 5. 2D-[1H/15N]-TROSY spectrum of Elf1D (150 μM) in the absence (black) and presence of a binding peptide (300 μM; blue).
References
- U. Hansen, L. Owens, and U. H. Saxena, Cell Cycle 8, 2146 (2009) https://doi.org/10.4161/cc.8.14.9089
- Q. Ming, Y. Roske, A. Schuetz, K. Walentin, I. Ibraimi, K. M. Schmidt-Ott, and U. Heinemann, Nucleic Acids Res. 46, 2082 (2018) https://doi.org/10.1093/nar/gkx1299
- K. -S. Jo, H. -R. Jo, C. G. Kim, C. -G. Kim, and H. -S. Won, J. Kor. Magn. Reson. Soc. 18, 30 (2014) https://doi.org/10.6564/JKMRS.2014.18.1.030
- H. C. Kang, B. M. Chung, J. H. Chae, S. -I. Yang, C. G. Kim, and C. G. Kim, FEBS J. 271, 1265 (2005)
- P. K. Santhekadur, D. Rajasekaran, A. Siddiq, R. Gredler, D. Chen, S. E. Schaus, U. Hansen, P. B. Fisher, and D. Sarkar, Am. J. Cancer Res. 2, 269 (2012)
- H. C. Kang, J. H. Chae, K. S. Choi, J. H. Shin, C. G. Kim, and C. G. Kim, Nucleic Acids Res. 38, 5456 (2010) https://doi.org/10.1093/nar/gkq286
- M. Y. Kim, J. S. Kim, S. H. Son, C. S. Lim, H. Y. Eum, D. H. Ha, M. A. Park, E. J. Baek, B. -Y. Ryu, H. C. Kang, V. N. Uversky, and C. G. Kim, Nucleic Acids Res. 46, 4933 (2018) https://doi.org/10.1093/nar/gky193
- B. K. Yoo, L. Emdad, R. Gredler, C. Fuller, C. I. Dumur, K. H. Jones, C. Jackson-Cook, Z. Su, D. Chen, U. H. Saxena, U. Hansen, P. B. Fisher, and D. Sarkar, Proc. Natl. Acad. Sci. USA 107, 8357 (2010) https://doi.org/10.1073/pnas.1000374107
- T. J. Grant, J. A. Bishop, L. M. Christadore, G. Barot, H. G. Chin, S. Woodson, J. Kavouris, A. Siddiq, R. Gredler, X. -N. Shen, J. Sherman, T. Meehan, K. Fitzgerald, S. Pradhan, L. A. Briggs, W. H. Andrews, D. Sarkar, S. E. Schaus, and U. Hansen, Proc. Natl. Acad. Sci. USA 109, 4503 (2012) https://doi.org/10.1073/pnas.1121601109
- K. -S. Jo, D. -W. Sim, E. -H. Kim, D. -H. Kang, Y. -B. Ma, J. -H. Kim, and H. -S. Won, J. Kor. Magn. Reson. Soc. 22, 64 (2018)
- Y. -S. Lee, J. Lee, K. -S. Ryu, Y. Lee, T. -G. Jung, J. -H. Jang, D. -W. Sim, E. -H. Kim, M. -D. Seo, K.W. Lee, and H. -S. Won, J. Mol. Biol. 427, 3850 (2015) https://doi.org/10.1016/j.jmb.2015.09.029
- S. N. Loh, Metallomics 2, 442 (2010) https://doi.org/10.1039/c003915b