Fig. 1. Ventx1.1 represses early and late neural genes in Xenopus whole embryo and animal cap explants.
Fig. 2. Genome-wide Xenopus ChIP-Seq of Ventx1.1 identifies two Ventx1.1 response cisacting elements (VRE1 and VRE2) on the zic3 promoter.
Fig. 3. Site-directed mutagenesis of VRE1 and VRE2 within the zic3 promoter-reporter construct abolishes the repressional activity of Ventx1.1. on the reporter.
Fig. 4. VRE1 mutation partially abolishes negative and positive effects of Xcad2 and FoxD5b-En, respectively.
Fig. 5. Schematic diagram depicting Ventx1.1 as a key protein in the neural inhibitory circuit of BMP4/Smad1/Xcad2/Ventx1.1 and the reciprocal inhibitory circuit of FoxD5b/Ventx1.1.
Table 1. Primers used for serially-deleted reporter gene constructs
Table 2. Primers used for RT-PCR amplification
Table 3. Primers used for site-directed mutagenesis gene constructs
Table 4. Primers used for ChIP-PCR assay
References
- Ault, K.T., Dirksen, M.L., and Jamrich, M. (1996). A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc. Natl. Acad. Sci. USA 93, 6415-6420. https://doi.org/10.1073/pnas.93.13.6415
- Blythe, S.A., Reid, C.D., Kessler, D.S., and Klein, P.S. (2009). Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev. Dyn. 238, 1422-1432. https://doi.org/10.1002/dvdy.21931
- Cha, S.W., Lee, J.W., Hwang, Y.S., Chae, J.P., Park, K.M., Cho, H.J., Kim, D.S., Bae, Y.C., and Park, M.J. (2008). Spatiotemporal regulation of fibroblast growth factor signal blocking for endoderm formation in Xenopus laevis. Exp. Mol. Med. 40, 550-557. https://doi.org/10.3858/emm.2008.40.5.550
- Dale, L., and Jones, C.M. (1999). BMP signalling in early Xenopus development. Bioessays 21, 751-760. https://doi.org/10.1002/(SICI)1521-1878(199909)21:9<751::AID-BIES6>3.0.CO;2-I
- De Robertis, E.M., and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285-308. https://doi.org/10.1146/annurev.cellbio.20.011403.154124
- Delaune, E., Lemaire, P., and Kodjabachian, L. (2005). Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132, 299-310. https://doi.org/10.1242/dev.01582
- Feledy, J.A., Beanan, M.J., Sandoval, J.J., Goodrich, J.S., Lim, J.H., Matsuo-Takasaki, M., Sato, S.M., and Sargent, T.D. (1999). Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1. Dev. Biol. 212, 455-464. https://doi.org/10.1006/dbio.1999.9374
- Henningfeld, K.A., Friedle, H., Rastegar, S., and Knochel, W. (2002). Autoregulation of Xvent-2B; direct interaction and functional cooperation of Xvent-2 and Smad1. J. Biol. Chem. 277, 2097-2103. https://doi.org/10.1074/jbc.M108524200
- Houtmeyers, R., Souopgui, J., Tejpar, S., and Arkell, R. (2013). The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol. life Sci. 70, 3791-3811. https://doi.org/10.1007/s00018-013-1285-5
- Hwang, Y.S., Lee, H.S., Roh, D.H., Cha, S., Lee, S.Y., Seo, J.J., Kim, J., and Park, M.J. (2003). Active repression of organizer genes by Cterminal domain of PV.1. Biochem. Biophys. Res. Commun. 308, 79-86. https://doi.org/10.1016/S0006-291X(03)01321-4
- Hwang, Y.S., Seo, J.J., Cha, S.W., Lee, H.S., Lee, S.Y., Roh, D.H., Kung Hf, H.F., Kim, J., and Ja Park, M. (2002). Antimorphic PV.1 causes secondary axis by inducing ectopic organizer. Biochem. Biophys. Res. Commun. 292, 1081-1086. https://doi.org/10.1006/bbrc.2002.6740
- Kumar, S., Umair, Z., Yoon, J., Lee, U., Kim, S.C., Park, J.B., Lee, J.Y., and Kim, J. (2018). Xbra and Smad-1 cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. Sci. Rep. 8, 11391. https://doi.org/10.1038/s41598-018-29740-9
- Lee, H.S., Lee, S.Y., Lee, H., Hwang, Y.S., Cha, S.W., Park, S., Lee, J.Y., Park, J.B., Kim, S., Park, M.J., et al. (2011). Direct response elements of BMP within the PV.1A promoter are essential for its transcriptional regulation during early Xenopus development. PloS one 6, e22621. https://doi.org/10.1371/journal.pone.0022621
- Lee, H.S., Park, M.J., Lee, S.Y., Hwang, Y.S., Lee, H., Roh, D.H., Kim, J.I., Park, J.B., Lee, J.Y., Kung, H.F., et al. (2002). Transcriptional regulation of Xbr-1a/Xvent-2 homeobox gene: analysis of its promoter region. Biochem. Biophys. Res. Commun. 298, 815-823. https://doi.org/10.1016/S0006-291X(02)02570-6
- Lee, S.Y., Lee, H.S., Moon, J.S., Kim, J.I., Park, J.B., Lee, J.Y., Park, M.J., and Kim, J. (2004). Transcriptional regulation of Zic3 by heterodimeric AP-1(c-Jun/c-Fos) during Xenopus development. Exp. Mol. Med. 36, 468-475. https://doi.org/10.1038/emm.2004.59
- Levy, V., Marom, K., Zins, S., Koutsia, N., Yelin, R., and Fainsod, A. (2002). The competence of marginal zone cells to become Spemann's organizer is controlled by Xcad2. Dev. Biol. 248, 40-51. https://doi.org/10.1006/dbio.2002.0705
- Maeno, M., Mead, P.E., Kelley, C., Xu, R.H., Kung, H.F., Suzuki, A., Ueno, N., and Zon, L.I. (1996). The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 88, 1965-1972.
- Munoz-Sanjuan, I., and Brivanlou, A.H. (2002). Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271-280. https://doi.org/10.1038/nrn786
- Nakata, K., Nagai, T., Aruga, J., and Mikoshiba, K. (1998). Xenopus Zic family and its role in neural and neural crest development. Mech. Dev. 75, 43-51. https://doi.org/10.1016/S0925-4773(98)00073-2
- Pillemer, G., Yelin, R., Epstein, M., Gont, L., Frumkin, Y., Yisraeli, J.K., Steinbeisser, H., and Fainsod, A. (1998). The Xcad-2 gene can provide a ventral signal independent of BMP-4. Mech. Dev. 74, 133-143. https://doi.org/10.1016/S0925-4773(98)00075-6
- Rogers, C.D., Moody, S.A., and Casey, E.S. (2009). Neural induction and factors that stabilize a neural fate. Birth Defects Res. C Embryo Today 87, 249-262. https://doi.org/10.1002/bdrc.20157
- Sasai, Y. (1998). Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos. Neuron 21, 455-458. https://doi.org/10.1016/S0896-6273(00)80554-1
- Sasai, Y., Lu, B., Steinbeisser, H., and De Robertis, E.M. (1995). Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333-336. https://doi.org/10.1038/376333a0
- Session, A.M., Uno, Y., Kwon, T., Chapman, J.A., Toyoda, A., Takahashi, S., Fukui, A., Hikosaka, A., Suzuki, A., Kondo, M., et al. (2016). Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336-343. https://doi.org/10.1038/nature19840
- Shim, S., Bae, N., Park, S.Y., Kim, W.S., and Han, J.K. (2005). Isolation of Xenopus FGF-8b and comparison with FGF-8a. Mol. Cells 19, 310-317.
- Suzuki, A., Kaneko, E., Maeda, J., and Ueno, N. (1997a). Mesoderm induction by BMP-4 and -7 heterodimers. Biochem Biophys Res Commun. 232, 153-156. https://doi.org/10.1006/bbrc.1997.6219
- Suzuki, A., Ueno, N., and Hemmati-Brivanlou, A. (1997b). Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037-3044.
- Wilson, P.A., Lagna, G., Suzuki, A., and Hemmati-Brivanlou, A. (1997). Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177-3184.
- Xu, R.H., Kim, J., Taira, M., Lin, J.J., Zhang, C.H., Sredni, D., Evans, T., and Kung, H.F. (1997). Differential regulation of neurogenesis by the two Xenopus GATA-1 genes. Mol. Cell Biol. 17, 436-443. https://doi.org/10.1128/MCB.17.1.436
- Xu, R.H., Kim, J., Taira, M., Zhan, S., Sredni, D., and Kung, H.F. (1995). A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem. Biophys. Res. Commun. 212, 212-219. https://doi.org/10.1006/bbrc.1995.1958
- Yan, B., Neilson, K.M., and Moody, S.A. (2010). Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. Dev. Dyn. 239, 3467-3480. https://doi.org/10.1002/dvdy.22485
- Yoon, J., Kim, J.H., Kim, S.C., Park, J.B., Lee, J.Y., and Kim, J. (2014a). PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos. Mol. Cells 37, 220-225. https://doi.org/10.14348/molcells.2014.2302
- Yoon, J., Kim, J.H., Lee, O.J., Lee, S.Y., Lee, S.H., Park, J.B., Lee, J.Y., Kim, S.C., and Kim, J. (2013). AP-1(c-Jun/FosB) mediates xFoxD5b expression in Xenopus early developmental neurogenesis. Int. J. Dev. Biol. 57, 865-872. https://doi.org/10.1387/ijdb.130163jk
- Yoon, J., Kim, J.H., Lee, S.Y., Kim, S., Park, J.B., Lee, J.Y., and Kim, J. (2014b). PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos. BMB Rep. 47, 673-678. https://doi.org/10.5483/BMBRep.2014.47.12.290
- Yu, S.B., Umair, Z., Kumar, S., Lee, U., Lee, S.H., Kim, J.I., Kim, S., Park, J.B., Lee, J.Y., and Kim, J. (2016). xCyp26c induced by inhibition of BMP signaling is involved in anterior-posterior neural patterning of Xenopus laevis. Mol. Cells 39, 352-357. https://doi.org/10.14348/molcells.2016.0006
Cited by
- Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos vol.10, pp.8, 2018, https://doi.org/10.3390/cells10082148
- Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula vol.10, pp.10, 2018, https://doi.org/10.3390/cells10102779
- Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos vol.44, pp.10, 2018, https://doi.org/10.14348/molcells.2021.0055
- The Organizer and Its Signaling in Embryonic Development vol.9, pp.4, 2018, https://doi.org/10.3390/jdb9040047
- Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos vol.11, pp.1, 2022, https://doi.org/10.3390/cells11010044