DOI QR코드

DOI QR Code

Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis

  • Umair, Zobia (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Kumar, Shiv (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Kim, Daniel H. (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Rafiq, Khezina (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Kumar, Vijay (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Kim, SungChan (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Park, Jae-Bong (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Lee, Jae-Yong (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University) ;
  • Lee, Unjoo (Department of Electrical Engineering, Hallym University) ;
  • Kim, Jaebong (Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University)
  • Received : 2018.08.13
  • Accepted : 2018.09.14
  • Published : 2018.12.31

Abstract

From Xenopus embryo studies, the BMP4/Smad1-targeted gene circuit is a key signaling pathway for specifying the cell fate between the ectoderm and neuro-ectoderm as well as the ventral and dorsal mesoderm. In this context, several BMP4/Smad1 target transcriptional factors have been identified as repressors of the neuro-ectoderm. However, none of these direct target transcription factors in this pathway, including GATA1b, Msx1 and Ventx1.1 have yet been proven as direct repressors of early neuro-ectodermal gene expression. In order to demonstrate that Ventx1.1 is a direct repressor of neuro-ectoderm genes, a genome-wide Xenopus ChIP-Seq of Ventx1.1 was performed. In this study, we demonstrated that Ventx1.1 bound to the Ventx1.1 response cis-acting element 1 and 2 (VRE1 and VRE2) on the promoter for zic3, which is a key early neuro-ectoderm gene, and this Ventx1.1 binding led to repression of zic3 transcription. Site-directed mutagenesis of VRE1 and VRE2 within zic3 promoter completely abolished the repression caused by Ventx1.1. In addition, we found both the positive and negative regulation of zic3 promoter activity by FoxD5b and Xcad2, respectively, and that these occur through the VREs and via modulation of Ventx1.1 levels. Taken together, the results demonstrate that the BMP4/Smad1 target gene, Ventx1.1, is a direct repressor of neuro-ectodermal gene zic3 during early Xenopus embryogenesis.

Keywords

E1BJB7_2018_v41n12_1061_f0001.png 이미지

Fig. 1. Ventx1.1 represses early and late neural genes in Xenopus whole embryo and animal cap explants.

E1BJB7_2018_v41n12_1061_f0002.png 이미지

Fig. 2. Genome-wide Xenopus ChIP-Seq of Ventx1.1 identifies two Ventx1.1 response cisacting elements (VRE1 and VRE2) on the zic3 promoter.

E1BJB7_2018_v41n12_1061_f0003.png 이미지

Fig. 3. Site-directed mutagenesis of VRE1 and VRE2 within the zic3 promoter-reporter construct abolishes the repressional activity of Ventx1.1. on the reporter.

E1BJB7_2018_v41n12_1061_f0004.png 이미지

Fig. 4. VRE1 mutation partially abolishes negative and positive effects of Xcad2 and FoxD5b-En, respectively.

E1BJB7_2018_v41n12_1061_f0005.png 이미지

Fig. 5. Schematic diagram depicting Ventx1.1 as a key protein in the neural inhibitory circuit of BMP4/Smad1/Xcad2/Ventx1.1 and the reciprocal inhibitory circuit of FoxD5b/Ventx1.1.

Table 1. Primers used for serially-deleted reporter gene constructs

E1BJB7_2018_v41n12_1061_t0001.png 이미지

Table 2. Primers used for RT-PCR amplification

E1BJB7_2018_v41n12_1061_t0002.png 이미지

Table 3. Primers used for site-directed mutagenesis gene constructs

E1BJB7_2018_v41n12_1061_t0003.png 이미지

Table 4. Primers used for ChIP-PCR assay

E1BJB7_2018_v41n12_1061_t0004.png 이미지

References

  1. Ault, K.T., Dirksen, M.L., and Jamrich, M. (1996). A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc. Natl. Acad. Sci. USA 93, 6415-6420. https://doi.org/10.1073/pnas.93.13.6415
  2. Blythe, S.A., Reid, C.D., Kessler, D.S., and Klein, P.S. (2009). Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev. Dyn. 238, 1422-1432. https://doi.org/10.1002/dvdy.21931
  3. Cha, S.W., Lee, J.W., Hwang, Y.S., Chae, J.P., Park, K.M., Cho, H.J., Kim, D.S., Bae, Y.C., and Park, M.J. (2008). Spatiotemporal regulation of fibroblast growth factor signal blocking for endoderm formation in Xenopus laevis. Exp. Mol. Med. 40, 550-557. https://doi.org/10.3858/emm.2008.40.5.550
  4. Dale, L., and Jones, C.M. (1999). BMP signalling in early Xenopus development. Bioessays 21, 751-760. https://doi.org/10.1002/(SICI)1521-1878(199909)21:9<751::AID-BIES6>3.0.CO;2-I
  5. De Robertis, E.M., and Kuroda, H. (2004). Dorsal-ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285-308. https://doi.org/10.1146/annurev.cellbio.20.011403.154124
  6. Delaune, E., Lemaire, P., and Kodjabachian, L. (2005). Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132, 299-310. https://doi.org/10.1242/dev.01582
  7. Feledy, J.A., Beanan, M.J., Sandoval, J.J., Goodrich, J.S., Lim, J.H., Matsuo-Takasaki, M., Sato, S.M., and Sargent, T.D. (1999). Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1. Dev. Biol. 212, 455-464. https://doi.org/10.1006/dbio.1999.9374
  8. Henningfeld, K.A., Friedle, H., Rastegar, S., and Knochel, W. (2002). Autoregulation of Xvent-2B; direct interaction and functional cooperation of Xvent-2 and Smad1. J. Biol. Chem. 277, 2097-2103. https://doi.org/10.1074/jbc.M108524200
  9. Houtmeyers, R., Souopgui, J., Tejpar, S., and Arkell, R. (2013). The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol. life Sci. 70, 3791-3811. https://doi.org/10.1007/s00018-013-1285-5
  10. Hwang, Y.S., Lee, H.S., Roh, D.H., Cha, S., Lee, S.Y., Seo, J.J., Kim, J., and Park, M.J. (2003). Active repression of organizer genes by Cterminal domain of PV.1. Biochem. Biophys. Res. Commun. 308, 79-86. https://doi.org/10.1016/S0006-291X(03)01321-4
  11. Hwang, Y.S., Seo, J.J., Cha, S.W., Lee, H.S., Lee, S.Y., Roh, D.H., Kung Hf, H.F., Kim, J., and Ja Park, M. (2002). Antimorphic PV.1 causes secondary axis by inducing ectopic organizer. Biochem. Biophys. Res. Commun. 292, 1081-1086. https://doi.org/10.1006/bbrc.2002.6740
  12. Kumar, S., Umair, Z., Yoon, J., Lee, U., Kim, S.C., Park, J.B., Lee, J.Y., and Kim, J. (2018). Xbra and Smad-1 cooperate to activate the transcription of neural repressor ventx1.1 in Xenopus embryos. Sci. Rep. 8, 11391. https://doi.org/10.1038/s41598-018-29740-9
  13. Lee, H.S., Lee, S.Y., Lee, H., Hwang, Y.S., Cha, S.W., Park, S., Lee, J.Y., Park, J.B., Kim, S., Park, M.J., et al. (2011). Direct response elements of BMP within the PV.1A promoter are essential for its transcriptional regulation during early Xenopus development. PloS one 6, e22621. https://doi.org/10.1371/journal.pone.0022621
  14. Lee, H.S., Park, M.J., Lee, S.Y., Hwang, Y.S., Lee, H., Roh, D.H., Kim, J.I., Park, J.B., Lee, J.Y., Kung, H.F., et al. (2002). Transcriptional regulation of Xbr-1a/Xvent-2 homeobox gene: analysis of its promoter region. Biochem. Biophys. Res. Commun. 298, 815-823. https://doi.org/10.1016/S0006-291X(02)02570-6
  15. Lee, S.Y., Lee, H.S., Moon, J.S., Kim, J.I., Park, J.B., Lee, J.Y., Park, M.J., and Kim, J. (2004). Transcriptional regulation of Zic3 by heterodimeric AP-1(c-Jun/c-Fos) during Xenopus development. Exp. Mol. Med. 36, 468-475. https://doi.org/10.1038/emm.2004.59
  16. Levy, V., Marom, K., Zins, S., Koutsia, N., Yelin, R., and Fainsod, A. (2002). The competence of marginal zone cells to become Spemann's organizer is controlled by Xcad2. Dev. Biol. 248, 40-51. https://doi.org/10.1006/dbio.2002.0705
  17. Maeno, M., Mead, P.E., Kelley, C., Xu, R.H., Kung, H.F., Suzuki, A., Ueno, N., and Zon, L.I. (1996). The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 88, 1965-1972.
  18. Munoz-Sanjuan, I., and Brivanlou, A.H. (2002). Neural induction, the default model and embryonic stem cells. Nat. Rev. Neurosci. 3, 271-280. https://doi.org/10.1038/nrn786
  19. Nakata, K., Nagai, T., Aruga, J., and Mikoshiba, K. (1998). Xenopus Zic family and its role in neural and neural crest development. Mech. Dev. 75, 43-51. https://doi.org/10.1016/S0925-4773(98)00073-2
  20. Pillemer, G., Yelin, R., Epstein, M., Gont, L., Frumkin, Y., Yisraeli, J.K., Steinbeisser, H., and Fainsod, A. (1998). The Xcad-2 gene can provide a ventral signal independent of BMP-4. Mech. Dev. 74, 133-143. https://doi.org/10.1016/S0925-4773(98)00075-6
  21. Rogers, C.D., Moody, S.A., and Casey, E.S. (2009). Neural induction and factors that stabilize a neural fate. Birth Defects Res. C Embryo Today 87, 249-262. https://doi.org/10.1002/bdrc.20157
  22. Sasai, Y. (1998). Identifying the missing links: genes that connect neural induction and primary neurogenesis in vertebrate embryos. Neuron 21, 455-458. https://doi.org/10.1016/S0896-6273(00)80554-1
  23. Sasai, Y., Lu, B., Steinbeisser, H., and De Robertis, E.M. (1995). Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333-336. https://doi.org/10.1038/376333a0
  24. Session, A.M., Uno, Y., Kwon, T., Chapman, J.A., Toyoda, A., Takahashi, S., Fukui, A., Hikosaka, A., Suzuki, A., Kondo, M., et al. (2016). Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336-343. https://doi.org/10.1038/nature19840
  25. Shim, S., Bae, N., Park, S.Y., Kim, W.S., and Han, J.K. (2005). Isolation of Xenopus FGF-8b and comparison with FGF-8a. Mol. Cells 19, 310-317.
  26. Suzuki, A., Kaneko, E., Maeda, J., and Ueno, N. (1997a). Mesoderm induction by BMP-4 and -7 heterodimers. Biochem Biophys Res Commun. 232, 153-156. https://doi.org/10.1006/bbrc.1997.6219
  27. Suzuki, A., Ueno, N., and Hemmati-Brivanlou, A. (1997b). Xenopus msx1 mediates epidermal induction and neural inhibition by BMP4. Development 124, 3037-3044.
  28. Wilson, P.A., Lagna, G., Suzuki, A., and Hemmati-Brivanlou, A. (1997). Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177-3184.
  29. Xu, R.H., Kim, J., Taira, M., Lin, J.J., Zhang, C.H., Sredni, D., Evans, T., and Kung, H.F. (1997). Differential regulation of neurogenesis by the two Xenopus GATA-1 genes. Mol. Cell Biol. 17, 436-443. https://doi.org/10.1128/MCB.17.1.436
  30. Xu, R.H., Kim, J., Taira, M., Zhan, S., Sredni, D., and Kung, H.F. (1995). A dominant negative bone morphogenetic protein 4 receptor causes neuralization in Xenopus ectoderm. Biochem. Biophys. Res. Commun. 212, 212-219. https://doi.org/10.1006/bbrc.1995.1958
  31. Yan, B., Neilson, K.M., and Moody, S.A. (2010). Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network. Dev. Dyn. 239, 3467-3480. https://doi.org/10.1002/dvdy.22485
  32. Yoon, J., Kim, J.H., Kim, S.C., Park, J.B., Lee, J.Y., and Kim, J. (2014a). PV.1 suppresses the expression of FoxD5b during neural induction in Xenopus embryos. Mol. Cells 37, 220-225. https://doi.org/10.14348/molcells.2014.2302
  33. Yoon, J., Kim, J.H., Lee, O.J., Lee, S.Y., Lee, S.H., Park, J.B., Lee, J.Y., Kim, S.C., and Kim, J. (2013). AP-1(c-Jun/FosB) mediates xFoxD5b expression in Xenopus early developmental neurogenesis. Int. J. Dev. Biol. 57, 865-872. https://doi.org/10.1387/ijdb.130163jk
  34. Yoon, J., Kim, J.H., Lee, S.Y., Kim, S., Park, J.B., Lee, J.Y., and Kim, J. (2014b). PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos. BMB Rep. 47, 673-678. https://doi.org/10.5483/BMBRep.2014.47.12.290
  35. Yu, S.B., Umair, Z., Kumar, S., Lee, U., Lee, S.H., Kim, J.I., Kim, S., Park, J.B., Lee, J.Y., and Kim, J. (2016). xCyp26c induced by inhibition of BMP signaling is involved in anterior-posterior neural patterning of Xenopus laevis. Mol. Cells 39, 352-357. https://doi.org/10.14348/molcells.2016.0006

Cited by

  1. Functional Roles of FGF Signaling in Early Development of Vertebrate Embryos vol.10, pp.8, 2018, https://doi.org/10.3390/cells10082148
  2. Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula vol.10, pp.10, 2018, https://doi.org/10.3390/cells10102779
  3. Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos vol.44, pp.10, 2018, https://doi.org/10.14348/molcells.2021.0055
  4. The Organizer and Its Signaling in Embryonic Development vol.9, pp.4, 2018, https://doi.org/10.3390/jdb9040047
  5. Bmp Signal Gradient Modulates Convergent Cell Movement via Xarhgef3.2 during Gastrulation of Xenopus Embryos vol.11, pp.1, 2022, https://doi.org/10.3390/cells11010044