DOI QR코드

DOI QR Code

AD 1950년 전후 고고유적의 절대연대측정에 대한 고찰: 오송 봉산리 옹기가마 유적을 중심으로

The Development of Earthenware Kilns in Bongsan-ri Archaeological Site, Osong: Implications for Pre- and Post-1950 AD Absolute Age Determination

  • 김명진 ((주)라드피온 고고과학연구소) ;
  • 손명수 ((주)라드피온 고고과학연구소) ;
  • 김태홍 ((재)한국선사문화연구원 조사연구실) ;
  • 성기석 ((주)카본에널리시스랩)
  • 투고 : 2018.09.29
  • 심사 : 2018.11.18
  • 발행 : 2018.12.20

초록

이 연구에서는 19세기 말부터 20세기 후반까지 사용된 것으로 알려진 오송 봉산리 옹기가마 유적에서 채취된 가마벽체 시료를 대상으로 TL/OSL 연대측정을 수행하였다. 고고선량은 SAR-TL/OSL법을 이용하여 측정된 매장기간 동안 시료에 축적된 흡수선량($ED_{burial}$), 배경선량($ED_{BG}$), fading 보정인자(f), 과대산출 보정인자(C)로부터 결정되었다. 또한 연간선량율 및 원산지는 시료의 자연방사능핵종($^{238}U$, $^{232}Th$, $^{40}K$)을 분석하여 산출되었다. 각 옹기가마의 TL/OSL 연대와 방사성탄소 연대를 비교 검토한 결과, 본 유적과 같은 근 현대 고고유적의 절대연대 편년을 위해서는 TL/OSL 연대측정과 방사성탄소 연대측정을 함께 수행하여 결합연대를 산출하는 것이 타당하다고 판단되었다. 오송 봉산리 옹기가마 유적의 조성 및 운영시기가 I 단계(5호, 6호 옹기가마) ${\rightarrow}$ II 단계(1호, 2호, 3호 옹기가마) ${\rightarrow}$ III 단계(4호 옹기가마)로 변천된다는 사실에 근거하여 베이지안 통계분석을 수행한 결과, 가장 이른 시기인 I 단계 옹기가마들의 사용 및 폐기시점은 $1910{\pm}23$년, II 단계는 $1970{\pm}10$년, III 단계는 $1987{\pm}4$년으로 각각 절대연대 편년되었으며, 이는 고고학적 편년관과도 정확히 일치하였다.

We conducted TL/OSL dating for the earthenware kilns in the Bongsan-ri archaeological site, Osong, which was occupied from the late nineteenth to the late twentieth century. With the SAR-TL/OSL method, paleodose was determined from the equivalent dose during the burial period($ED_{burial}$), the background dose($ED_{BG}$), the fading correction factor(f), and the overestimation correction factor(C). The annual dose rates and their provenance were evaluated from the measurement of natural radionuclides $^{238}U$, $^{232}Th$, and $^{40}K$. Because the comprehensive absolute age was provided by combining the resulting TL/OSL and radiocarbon data, we concluded that, for the absolute chronology of a modern archaeological site, TL/OSL dating and radiocarbon dating must be carried out together and summed. The construction and occupation of earthenware kilns in the Bongsan-ri site had changed from stage I (No.5, 6 kilns), to stage II (No.1, 2, 3 kilns), to stage III (No.4) in chronological order. When Bayesian statistics were applied, we found that the absolute ages of occupation for stages I, II, and III correspond to AD $1910{\pm}23$, AD $1970{\pm}10$, and AD $1987{\pm}4$. These results were in good agreement with the archaeological context or chronology.

키워드

참고문헌

  1. Aitken, M.J., 1985, Thermoluminescence dating. Academic Press. Cambridge.
  2. Aitken, M.J., 1998, An introduction to optical dating. Oxford University Press. Oxford.
  3. Botter-Jenson, L., Bulur, E., Duller, G.A.T. and Murray, A.S., 2003, Developments in radiation, stimulation and observation facilities in luminescence measurements. Radiation Measurements, 37, 535-541. https://doi.org/10.1016/S1350-4487(03)00020-9
  4. Bronk Ramsey, C., 2009, Bayesian analysis of radiocarbon dates. Radiocarbon, 51, 337-360. https://doi.org/10.1017/S0033822200033865
  5. Chung, D.C., Ryu, C.Y., Hong, H.S. and Youn, Y.H., 2002, Our ethnic scientific crafts. Minsokwon. Seoul. (in Korean)
  6. Fleming, S.J., 1970, Thermoluminescent dating: Refinement of the quartz inclusion method. Archaeometry, 12, 133-147. https://doi.org/10.1111/j.1475-4754.1970.tb00016.x
  7. Hong, D.G., Kim, M.J., Choi, J.H., El-Faramawy, N.A. and Goksu, H.Y., 2006, Equivalent dose determination of single aliquot regenerative-dose(SAR) protocol using thermoluminescence on heated quartz. Nuclear Instruments and Methods in Physics Research B, 243, 174-178. https://doi.org/10.1016/j.nimb.2005.05.059
  8. Hua, Q., Barbetti, M. and Rakowski, A.Z., 2013, Atmospheric radiocarbon for the period 1950-2010. Radiocarbon, 55, 2059-2072. https://doi.org/10.2458/azu_js_rc.v55i2.16177
  9. Institute of Korean Prehistory, 2018, Brief excavation report of the earthenware in Bongsan-ri site in Osong No.2. Life Science Complex, Cheongju. (in Korean)
  10. Kim, G.D., Eum, C.H. and Bang, J.H., 2007, Dose rate conversion factor for soil by the beta-rays and gamma-rays from 238,235U, 232Th and 40K. Analytical Science and Technology, 20, 460-467. (in Korean with English abstract)
  11. Kim, M.J., Lee, S.J., Park, S.B. and Hong, D.G., 2005, Investigation for radiocarbon dates of Karak-dong assemblage of the early Bronze age in central region of Korea, using Bayesian statistical methods. Journal of Korean Ancient Historical Society, 47, 37-57. (in Korean with English abstract)
  12. Kim, M.J., 2005, Optically stimulated luminescence dating using single aliquot regeneration method of single sandsized grains from archaeological materials. Geumgang Archaeology, 2, 153-170. (in Korean with English abstract)
  13. Kim, M.J., 2010, Physical characteristics of POSL and age determination for quartz from Korean paleosol. Ph. D. dissertation, Kangwon National University, Chuncheon, 97-111. (in Korean with English abstract)
  14. Kim, M.J., 2011, Absolute dating methods. Journal of Korean Archaeology. 194-207. (in Korean)
  15. Kim, M.J., Yang, H.J. and Hong, D.G., 2011, OSL age determination of the hearths in a Bronze age dwelling site by using bayesian statistics. Journal of Radiation Protection and Research, 36, 52-58. (in Korean with English abstract)
  16. Kim, M.J., Kim, S.Y., Lee, J.I., Kim, J.L., Chang, I. and Hong, D.G., 2013, Environmental gamma-ray dose rate measurement by using ultra-high sensitive LiF:Mg,Cu,Si TLD. Radiation Measurements, 56, 248-251. https://doi.org/10.1016/j.radmeas.2013.02.011
  17. Liritzis, I., Stamoulis, K., Papachristodoulou, C. and Ioannides, K., 2013, A re-evaluation of radiation dose-rate conversion factors. Mediterranean Archaeology and Archaeometry, 13, 1-15.
  18. Murray, A.S. and Wintle, A.G., 2003, The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiation Measurements, 37, 377-381. https://doi.org/10.1016/S1350-4487(03)00053-2
  19. Prescott, J.R. and Hutton, J.T., 1994, Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations. Radiation Measurements, 23, 497-500. https://doi.org/10.1016/1350-4487(94)90086-8
  20. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatt, C., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M. and van der Plicht, J., 2013, IntCal13 and Marine13 radiocarbon age calibration curves 0-50000 years cal BP. Radiocarbon, 55, 1869-.1887. https://doi.org/10.2458/azu_js_rc.55.16947
  21. Spalding, K.L., Buchholz, B.A., Bergman, L.E., Druid, H. and Frisen, J., 2005, Forensics: Age written in teeth by nuclear tests. Nature, 437, 333. https://doi.org/10.1038/437333a
  22. Spooner, N.A., Aitken, M.J., Smith, B.W., Franks, M. and McElroy, C., 1990, Archaeological dating by infraredstimulated luminescence using a diode array. Radiation Protection Dosimetry, 34, 83-86. https://doi.org/10.1093/oxfordjournals.rpd.a080853
  23. Wintle, A.G. and Murray, A.S., 1997, The relationship between quartz thermoluminescence, photo-transferred thermoluminescence, and optically stimulated luminescence. Radiation Measurements, 27, 611-624. https://doi.org/10.1016/S1350-4487(97)00018-8
  24. Woda, C., Ulanovsky, A., Bougrov, N.G., Fiedler, I., Degteva, M.O. and Jacob, P., 2011, Potential and limitations of the $210^{\circ}C$ TL peak in quartz for retrospective dosimetry. Radiation Measurements, 46, 485-493. https://doi.org/10.1016/j.radmeas.2011.03.019
  25. Woda, C., Fiedler, I., Urso, L. and Kaiser, J.C., 2012, Retrospective dosimetry for the population in emergency situations. Bundesamt fur Strahlenschutz(BfS).
  26. Zimmerman, D.W., 1971, Thermoluminescent dating using fine grains from pottery. Archeometry, 13, 29-52. https://doi.org/10.1111/j.1475-4754.1971.tb00028.x