DOI QR코드

DOI QR Code

Experimental and Theoretical Studies on Corrosion Inhibition Performance of Phenanthroline for Cast Iron in Acid Solution

  • Idir, B. (USTHB, Laboratoire d'Electrochimie-Corrosion, Metallurgie et Chimie Minerale Faculte de Chimie BP32 El-Alia Bab-Ezzouar Alger-Algerie) ;
  • Kellou-Kerkouche, F. (USTHB, Laboratoire d'Electrochimie-Corrosion, Metallurgie et Chimie Minerale Faculte de Chimie BP32 El-Alia Bab-Ezzouar Alger-Algerie)
  • Received : 2018.05.12
  • Accepted : 2018.07.16
  • Published : 2018.12.31

Abstract

The corrosion inhibition of cast iron in 1 M HCl by Phenanthroline (Phen) was investigated using potentiodynamic polarization (PDP) curves, electrochemical impedance spectroscopy (EIS), surface analysis and theoretical calculations. It is found that Phen exhibits high inhibition activity towards the corrosive action of HCl and its adsorption obeys the Langmuir adsorption isotherm model. The results showed that inhibition efficiency increases with Phen concentration up to a maximum value of 96% at 1.4 mM, and decreases slightly with the increase in temperature. The free adsorption energy value indicates that Phen adsorbs on cast iron surface in 1 M HCl via a simultaneous physisorption and chemisorption mechanism. Scanning electron microscopy (SEM) micrographs, atomic force microscopy (AFM) and FTIR analysis confirmed the formation of a protective film on cast iron surface, resulting in the improvement of its corrosion resistance in the studied aggressive solution. Quantum chemical calculations at the DFT level were achieved to correlate electronic structure parameters of Phen molecules with their adsorption mode.

Keywords

References

  1. J. Olofsson, I. Svensson, Mater Des, 2013,43, 264-271. https://doi.org/10.1016/j.matdes.2012.07.006
  2. M. Gorny, E. Tyrala, J Mater Eng Perform, 2013, 22(1), 300-305. https://doi.org/10.1007/s11665-012-0233-0
  3. K. F. Nilsson, D. Blagoeva, P. Moretto, Eng Fract Mech, 2006, 73(9), 1133-1157. https://doi.org/10.1016/j.engfracmech.2005.12.005
  4. G.F. Geier, W. Bauer, B.J. McKay, P. Schumacher, Mater Sci Eng A, 2005, 413, 339-345.
  5. S. Kim, S.L. Cockcroft, A.M. Omran, J Alloys Compd, 2009, 476(1-2), 728-732. https://doi.org/10.1016/j.jallcom.2008.09.082
  6. M. Wessen, I.L. Svensson, R. Aagaard, Int J Cast Met Res, 2003, 16(1-3), 119-124. https://doi.org/10.1080/13640461.2003.11819569
  7. S.K. Putatunda, Mater Manuf Process, 2010, 25(8), 749-757. https://doi.org/10.1080/10426910903367394
  8. A.H. El-Askalany, S.I. Mostafa, K. Shalabi, A.M. Eid, S. Shaaban, J Mol Liq, 2016, 223,497-508. https://doi.org/10.1016/j.molliq.2016.08.088
  9. A.Y. Musa, A.B. Mohamad, A.A.H. Kadhum, M.S. Takriff, L.T. Tien, Corros Sci, 2011, 53(11), 3672-3677. https://doi.org/10.1016/j.corsci.2011.07.010
  10. E. A. Noor, A. H. Al-Moubaraki, Mater Chem Phys, 2008, 110,145-154. https://doi.org/10.1016/j.matchemphys.2008.01.028
  11. M. Slimane, F. Kellou, S. Kellou-Tairi, Res Chem Intermed, 2015, 41(11), 8571-8590. https://doi.org/10.1007/s11164-014-1912-2
  12. L. D. Mello, R.S. Goncalves, Corros Sci, 2001, 43(3), 457-470. https://doi.org/10.1016/S0010-938X(00)00102-5
  13. M. Abdeli, N. P. Ahmadi, R. A. Khosroshahi, J Solid State Electrochem, 2010, 14(7), 1317-1324. https://doi.org/10.1007/s10008-009-0925-z
  14. M. Abdallah, H. M. Al-Tass, B.A.A.L. Jahdaly, A. S. Fouda, J Mol Liq, 2016, 216, 590-597. https://doi.org/10.1016/j.molliq.2016.01.077
  15. P. Morales-Gil, M.S. Walczak, C. R. Camargo, R. A. Cottis, J.M. Romero, R. Lindsay, Corros Sci, 2015, 101, 47-55. https://doi.org/10.1016/j.corsci.2015.08.032
  16. Y. Yan, W. Li, L. Cai, B. Hou, Electrochem Acta, 2008, 53(20),5953-5960. https://doi.org/10.1016/j.electacta.2008.03.065
  17. M. Finsgar, J. Jackson, Corros Sci, 2014, 86, 17-41. https://doi.org/10.1016/j.corsci.2014.04.044
  18. M. Shabani-Nooshabadi, M. Behpour, F. S. Razavi, M. Hamadanian, V. Nejadshafiee, RSC Adv, 2015, 5(30), 23357-23366. https://doi.org/10.1039/C5RA00561B
  19. L. Bai, L. J. Feng, H. Y. Wang, Y. B. Lu, X. W. Lei, F. L. Bai, RSC Adv, 2015, 5(6), 4716-4726. https://doi.org/10.1039/C4RA12286K
  20. Y. Abboud, A. Abourriche, T. Saffaj, M. Berrada, M. Charrouf, A. Bennamara, N. Al Himidi, H. Hannache, Mater Chem Phys, 2007, 105(1), 1-5. https://doi.org/10.1016/j.matchemphys.2007.03.037
  21. M. A. Quraishi, J. Rawat, M. Ajmal, J Appl Electrochem, 2000, 30,745-751. https://doi.org/10.1023/A:1004099412974
  22. S. N. Banerjee, S. Misra, Corrosion, 1989, 45(9), 780-783. https://doi.org/10.5006/1.3585034
  23. X. Li, S. Deng, X. Xie, J Taiwan Inst Chem Eng, 2014, 45(4), 1865-1875. https://doi.org/10.1016/j.jtice.2013.10.007
  24. N. O. Obi-Egbedi, I. B. Obot, A. O. Eseola, Arab J Chem, 2014, 7,197-207. https://doi.org/10.1016/j.arabjc.2010.10.025
  25. X. Liu, P. C. Okafor, B. Jiang, H. Hu, Y. Zheng, J Mater Eng Perform, 2015, 24(9), 3599-3606. https://doi.org/10.1007/s11665-015-1608-9
  26. F. Kellou-Kerkouche, A. Benchettara, S. Amara , Mater Chem Phys, 2008, 110(1), 26-33. https://doi.org/10.1016/j.matchemphys.2008.01.005
  27. V. Rajeswari, P. Viswanathamurthi, D. Kesavan, Res Chem Intermed, 2017, 43(7), 3893-3913. https://doi.org/10.1007/s11164-016-2852-9
  28. V. Rajeswari, D. Kesavan, M. Gopiraman, P. Viswanathamurthi, Carbohydr Polym, 2013, 95,288-294. https://doi.org/10.1016/j.carbpol.2013.02.069
  29. V. Rajeswari, D. Kesavan, M. Gopiraman, P. Viswanathamurthi, J Surfact Deterg, 2013, 16(4), 571-580. https://doi.org/10.1007/s11743-013-1439-3
  30. V. Rajeswari, D. Kesavan, M. Gopiraman, P. Viswanathamurthi, K. Poonkuzhali, T. Palvannan, Appl Surf Sci, 2014, 314, 537-545. https://doi.org/10.1016/j.apsusc.2014.07.017
  31. M. Chikira, Y. Tomizawa, D. Fukita, T. Sugizaki, N. Sugawara, T. Yamazaki, A. Sasano, H. Shindo, M. Palaniandavar, W. Antholine, J Inorg Biochem, 2002, 89,163-173. https://doi.org/10.1016/S0162-0134(02)00378-1
  32. X. Li, S. Deng, T. Lin, X. Xie, G. Du, Corros Sci, 2017, 118, 202-216. https://doi.org/10.1016/j.corsci.2017.02.011
  33. R. G. Parr, L. Szentpaly, S. Liu, J Am Chem Soc, 1999, 121(9), 1922-1924. https://doi.org/10.1021/ja983494x
  34. R. G. Pearson, Inorg. Chem. 1988, 27(4), 734-740. https://doi.org/10.1021/ic00277a030
  35. A.Kokalj, Electrochim Acta, 2001, 56, 745-755.
  36. Q. Qu, Z. Hao, L. Li, W. Bai, Y. Liu, Z. Ding, Corros Sci, 2009, 51(3), 569-574. https://doi.org/10.1016/j.corsci.2008.12.010
  37. A. Ostovari, S. M. Hoseinieh, M. Peikari, S. R. Shadizadeh, S. J. Hashemi, Corros Sci, 2009, 51(9), 1935-1949. https://doi.org/10.1016/j.corsci.2009.05.024
  38. A. K. Singh, M. A. Quraishi, Corros Sci, 2010, 52(4), 1373-1385. https://doi.org/10.1016/j.corsci.2010.01.007
  39. E. E. Oguzie, Y. Li, F. H. Wang, J Colloid Interf Sci, 2007, 310(1), 90-98. https://doi.org/10.1016/j.jcis.2007.01.038
  40. P. Bommersbach, C. A. Dumont, J. P. Millet, B. Normand, Electrochim Acta, 2006, 51(19), 4011-4018. https://doi.org/10.1016/j.electacta.2005.11.020
  41. A. M. Abdel-Gaber, B. A. Abd-El-Nabey, I. M. Sidahmed, A. M. El-Zayady, M. Saadawy, Corros Sci, 2006, 48(9), 2765-2779. https://doi.org/10.1016/j.corsci.2005.09.017
  42. X. Li, S. Deng, H. Fu, Corros Sci, 2012, 62, 163-175. https://doi.org/10.1016/j.corsci.2012.05.008
  43. B. Xu, W. Yang, Y. Liu, X. Yin, W. Gong, Y. Chen, Corros Sci, 2014, 78, 260-268. https://doi.org/10.1016/j.corsci.2013.10.007
  44. G. Khan, W. J. Basirun, S. N. Kazi, P. Ahmed, L. Magaji, S. M. Ahmed, G. M. Khan, M. A. Rehman, J Colloid Interf Sci, 2017, 502, 134-145. https://doi.org/10.1016/j.jcis.2017.04.061
  45. C H. Hsu, F. Mansfeld, Corrosion, 2001, 57(9), 747-748. https://doi.org/10.5006/1.3280607
  46. K. F. Khaled, Electrochim Acta, 2008, 53(9), 3484-3492. https://doi.org/10.1016/j.electacta.2007.12.030
  47. S. S. Abd- El Rehim, M. A. M. Ibrahim, K.F. Khalid, Mater Chem Phys, 2001, 70(3), 268-273. https://doi.org/10.1016/S0254-0584(00)00462-4
  48. X. Li, L. Tang, L. Li, G. Mu, G. Liu, Corros Sci, 2006, 48(2), 308-321. https://doi.org/10.1016/j.corsci.2004.11.029
  49. G.N Mu, X Li, F Li,Mater Chem Phys, 2004, 86(1), 59-68. https://doi.org/10.1016/j.matchemphys.2004.01.041
  50. I. B. Obot, N.O Obi-Egbedi, E.E Ebenso, A.S. Afolabi, E.E. Oguzie, Res. Chem. Intermed, 2013, 39(5), 1927-1948. https://doi.org/10.1007/s11164-012-0726-3
  51. I.B. Obot, N.O. Obi-Egbedi, AO. Eseola, Ind. Eng. Chem. Res, 2011, 50(4), 2098-2110. https://doi.org/10.1021/ie102034c
  52. X Lei, H Wang, Y Feng, J Zhang, X Sun, S Lai, Z Wang, S Kang, RSC. Adv, 2015, 5(120), 99084-99094. https://doi.org/10.1039/C5RA15002G
  53. H. Ashassi-Sorkhabi, D. Seifzadeh, J. Appl. Electrochem, 2008, 38(11),1545-1552. https://doi.org/10.1007/s10800-008-9602-7
  54. M. Yadav, S. Kumar, L. Gope, J. Adhes. Sci. Technol, 2014, 28(11), 1072-1089. https://doi.org/10.1080/01694243.2014.884754
  55. A. M. Badiea, K. N. Mohana, Corros. Sci, 2009, 51(9), 2231-2241. https://doi.org/10.1016/j.corsci.2009.06.011
  56. M. M. Solomon, S. A. Umoren, I. I. Udosoro, A.P. Udoh, Corros. Sci, 2010, 52(4), 1317-1325. https://doi.org/10.1016/j.corsci.2009.11.041
  57. A. A. El-Awady, B. A. Abd-El-Nabey, S. G. Aziz, J. Electrochem. Soc, 1992, 139(8), 2149-2154. https://doi.org/10.1149/1.2221193
  58. I. B. Obot, E. E. Ebenso, N. O. Obi-Egbedi, A. S. Afolabi, Z. M. Gasem, Res. Chem. Intermed, 2012, 38(8), 1761-1779. https://doi.org/10.1007/s11164-012-0501-5
  59. M. Abdeli, N. P. Ahmadi, R. A. Khosroshahi, J Solid State Electrochem, 2011, 15(9), 1867-1873. https://doi.org/10.1007/s10008-010-1162-1
  60. S. Nesic., Corros. Sci, 2007, 49(12), 4308-4338. https://doi.org/10.1016/j.corsci.2007.06.006
  61. C. M. Goulart, A. Esteves-Souza, C.A. Martinez-Huitle, C. J. Ferreira, M. A. Medeiros, A. Echevarria, Corros. Sci, 2013, 67, 281-291. https://doi.org/10.1016/j.corsci.2012.10.029
  62. M. Lebrini, M. Lagrenee, H. Vezin, M. Traisnel, F. Bentiss, Corros Sci, 2007, 49(5), 2254-2269. https://doi.org/10.1016/j.corsci.2006.10.029
  63. M. Behpour, S. M. Ghoreishi, N. Soltani, M. Salavati-Niasari, M. Hamadanian, A. Gandomi, Corros. Sci, 2008, 50(8), 2172-2181. https://doi.org/10.1016/j.corsci.2008.06.020
  64. X. Li, S. Deng, H. Fu, Corros. Sci, 2012, 55, 280-288. https://doi.org/10.1016/j.corsci.2011.10.025
  65. T. Szauer, A. Brand, Electrochim. Acta, 1981, 26(9), 1253-1256. https://doi.org/10.1016/0013-4686(81)85107-9
  66. H. Hamani, T. Douadi, D. Daoud, M. Al-Noaimi, R. Rikkouh, S. Chafaa, J. electroanal. Chem, 2017, 801, 425-438. https://doi.org/10.1016/j.jelechem.2017.08.031
  67. OLJr. Riggs, RM Hurd, Corrosion, 1967, 23(8), 252-260. https://doi.org/10.5006/0010-9312-23.8.252
  68. G. Gece, Corros Sci, 2008, 50(11), 2981-2992. https://doi.org/10.1016/j.corsci.2008.08.043
  69. S. Martinez, I. Stagljar, J Mol Struc Theochem, 2003, 640, 167-174. https://doi.org/10.1016/j.theochem.2003.08.126
  70. I. Lukovits, E. Kalman, F. Zucchi, Corrosion, 2001, 57(1), 3-8. . https://doi.org/10.5006/1.3290328
  71. A. M. Al-Sabagh, N. M. Nasser, A. A. Farag, M. A. Migahed, A. M. F Eissa, T. Mahmoud, Egypt. J. Pet, 2013, 22(1), 101-116. https://doi.org/10.1016/j.ejpe.2012.09.004
  72. M. R. N. El-Din, E. A. Khamis, J. Surfact. Deterg, 2014, 17(4), 795-805. https://doi.org/10.1007/s11743-014-1565-6
  73. I. B. Obot, S. Kaya, C. Kaya, B. Tuzun, Res. Chem. Intermed, 2016, 42(5), 4963-4983. https://doi.org/10.1007/s11164-015-2339-0
  74. M. A. Hegazy, J. Mol. Liq, 2015, 208, 227-236. https://doi.org/10.1016/j.molliq.2015.04.042
  75. H. M. Abd El-Lateef, A. H. Tantawy, RSC. Adv, 2016, 6(11), 8681-8700. https://doi.org/10.1039/C5RA21626E
  76. L. Madkour, S. Kaya, C. Kaya, L. Guo, J Taiwan Inst Chem E, 2016, 68, 461-480. https://doi.org/10.1016/j.jtice.2016.09.015
  77. D.A. Thornton, G.M. Watkins, Spectrochim. Acta A, 1991, 47(8), 1085-1096. https://doi.org/10.1016/0584-8539(91)80039-L
  78. A.A. Schilt, and Taylor, R.C, J. Inorg. Nucl. Chem. 1959, 9(3-4), 211-221. https://doi.org/10.1016/0022-1902(59)80224-4
  79. G. Vengatesh, G. Karthik, M. Sundaravadivelu, Egypt. J. Petrol, 2017, 26(3), 705-719. https://doi.org/10.1016/j.ejpe.2016.10.011
  80. L. Li, X. Zhang, J. Lei, J. He, S. Zhang, F, Pan, Corros Sci, 2012, 63, 82-90. https://doi.org/10.1016/j.corsci.2012.05.026