DOI QR코드

DOI QR Code

ON THE AVERAGE SHADOWING PROPERTY IN LINEAR DYNAMICAL SYSTEMS

  • Kang, Bowon (Department of Mathematics Chungnam National University) ;
  • Koo, Namjip (Department of Mathematics Chungnam National University) ;
  • Lee, Manseob (Department of Mathematics Mokwon University)
  • Received : 2017.10.13
  • Accepted : 2018.02.05
  • Published : 2018.02.15

Abstract

In this paper we show that two notions of the average shadowing property and the hyperbolicity are equivalent in linear dynamical systems on the vector space ${\mathbb{C}}^n$.

Keywords

References

  1. D. V. Anosov, On a class of invariant sets of smooth dynamical systems, In: Proc. 5th Int. Conf. Nonl. Oscill. Kiev, 2 (1970), 39-45
  2. N. Aoki and K. Hiraide, Topological Theory of Dynamical Systems. Recent Advances, North-Holland Math. Library, 52, North-Holland, Amsterdam, 1994.
  3. G. Birkhoff, An extension of Poincare's last geometric theorem, Acta Math. 47 (1926), 297-311.
  4. M. L. Blank, Metric properties of $\varepsilon$-trajectories of dynamical systems with stochastic behaviour, Ergod. Th. & Dynam. Sys. 8 (1988), 365-378.
  5. M. L. Blank, Small perturbations of chaotic dynamical systems(Russian), Uspekhi Mat. Nauk, 44 (1989), no. 6(270), 3-28, 203; translation in Russian Math. Surveys, 44 (1989), no. 6, 1-33.
  6. R. Bowen, $\omega$-Limit sets for Axiom A diffeomorphisms, J. Differential Equations, 18 (1975), 333-339.
  7. T. Choi and K. Lee, Various inverse shadowing in linear dynamical systems, Commun. Korean Math. Soc. 21 (2006), no. 3, 515-526. https://doi.org/10.4134/CKMS.2006.21.3.515
  8. R. Easton, Chain transitivity and domain of in uence of an invariant set, The Structure of Atractors in Dynamical Systems (North Dacota State Univ. June 1977), Lecture Notes in Math. 668 (Springer Verlag, Berlin, 1978), 95-102.
  9. K. Kulczycki, D. Kwietniak, and P. Oprocha, On almost speci cation and average shadowing properties, Fund. Math. 224 (2014), no. 3, 241-278. https://doi.org/10.4064/fm224-3-4
  10. D. Kwietniak and P. Oprocha, A note on the average shadowing property for expansive maps, Topology Appl. 159 (2012), no. 1, 19-27.
  11. K. Lee, M. Lee, and J. Park, Linear diffeomorphisms with limit shadowing, J. Chungcheong Math. Soc. 26 (2013), 309-313.
  12. M. Lee, Average shadowing property on closed sets, Far East J. Math. Sci. 57 (2011), 171-179.
  13. M. Lee, Stably average shadowable homoclinic classes, Nonliear Anal. 74 (2011), 689-694.
  14. M. Lee, Asymptotic average shadowing in linear dynamical systems, Far East J. Math. Sci. 66 (2012), 37-44.
  15. M. Lee, Linear dynamical systems with ergodic shadowing, Far East J. Math. Sci. 68 (2012), 239-244.
  16. M. Lee and X. Wen, Diffeomorphisms with $C^1$-stably average shadowing, Acta Math. Sin. Eng. Seri. 29 (2013), 85-92.
  17. Y. X. Niu, The average-shadowing property and strong ergodicity, J. Math. Anal. Appl. 376 (2011), 528-534.
  18. K. Palmer, Shadowing in Dynamical Systems: Theory and Applications, Kluwer, Dordrecht, 2000.
  19. J. Park and Y. Zhang, Average shadowing properties on compact metric spaces, Commun. Korean Math. Soc. 21 (2006), no. 2, 355-361. https://doi.org/10.4134/CKMS.2006.21.2.355
  20. S. Y. Pilyugin, Shadowing in Dynamical Systems, Lecture Notes in Math. 1706, Springer Verlag, Berlin, 1999.
  21. S. Y. Pilyugin, A. A. Rodionova, and K. Sakai, Orbital and weak shadowing properties, Discrete Contin. Dynam. Syst. 9 (2003), 287-308.
  22. S. Y. Pilyugin and K. Sakai, Shadowing and Hyperbolicity, Lecture Notes in Math. 2193, Springer International Publishing AG, 2017.
  23. Y. Zhang, On the average-shadowing property, Acta Sci. Natur. Univ. Pekinensis, 37 (2001), 648-651.