References
- R. P. Agarwal, S. Deng, and W. Zhang, Generalization of a retarded Gronwall-like inequality and its applications, Appl. Math. Comput. 165 (2005), 599-612.
- D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Properties of the Solutions, World Scientitic Publishing Co. Pte Ltd, River Edge(NJ), 1995.
- S. K. Choi, B. Kang, and N. Koo, Stability for Caputo fractional differential equations, Proc. Jangjeon Math. Soc. 16 (2013), 165-174.
- S. K. Choi and N. Koo, On a Gronwall-type inequality on time scales, J. Chungcheong Math. Soc. 23 (2010), 137-147.
- S. K. Choi and N. Koo, The monotonic property and stability of solutions of fractional differential equations, Nonlinear Anal. 74 (2011), 6530-6536.
- S. K. Choi and N. Koo, A note on linear impulsive fractional differential equations, J. Chungcheong Math. Soc. 28 (2015), 583-590.
- S. K. Choi, N. Koo, and C. Ryu, Impulsive integral inequalities with a non-separable kernel, J. Chungcheong Math. Soc. 27 (2014), 651-659.
- Z. Denton and A. S. Vatsala, Fractional integral inequalities and applications, Comput. Math. Appl. 59 (2010), 1087-1094.
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
- V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publishing Co. Pte. Ltd. NJ, 1989.
- V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers Ltd, 2009.
- O. Lipovan, A retarded Gronwall-like inquality and its applications, J. Math. Anal. Appl. 252 (2000), 389-401.
- B. G. Pachpatte, On some generalizations of Bellman's lemma, J. Math. Anal. Appl. 5(1975), 141-150.
- J. Wang, Y. Zhou, and M. Feckan, Nonlinear impulsive problems for fractional differential equations and Ulam stability, Comput. Math. Appl. 64 (2012), 3389-3405.
- H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to fractional differential equations, J. Math. Anal. Appl. 328 (2007), 1075-1081.