DOI QR코드

DOI QR Code

Comparison of removal torques between laser-etched and modified sandblasted acid-etched Ti implant surfaces in rabbit tibias

  • Park, Kyung-Soon (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Al Awamleh, Abdel Ghani Ibrahim (Department Oral and Maxillofacial Surgery in Al Hussein Hospital) ;
  • Cho, Sung-Am (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • Received : 2017.08.17
  • Accepted : 2017.09.12
  • Published : 2018.02.28

Abstract

PURPOSE. The purpose of this study was to analyze the effects of two different implant surface treatments on initial bone connection by comparing the Removal Torque Values (RTQs) at 7 and 10 days after chemically modified, sandblasted, large-grit and acid-etched (modSLA), and Laser-etched (LE) Ti implant placements. MATERIALS AND METHODS. Twenty modSLA and 20 LE implants were installed on the left and right tibias of 20 adult rabbits. RTQs were measured after 7 and 10 days in 10 rabbits each. Scanning electron microscope (SEM) photographs of the two implants were observed by using Quanta FEG 650 from the FEI company (Hillsboro, OR, USA). Analyses of surface elements and components were conducted using energy dispersive spectroscopy (EDS, Horiba, Kyoto, Japan). RESULTS. The mean RTQs were $12.29{\pm}0.830$ and $12.19{\pm}0.713$ Ncm after 7 days (P=.928) and $16.47{\pm}1.324$ and $16.17{\pm}1.165$ Ncm after 10 days (P=.867) for LE and modSLA, respectively, indicating no significant inter-group differences. Pore sizes in the LE were $40{\mu}m$ and consisted of numerous small pores, whereas pore sizes in the modSLA were $5{\mu}m$. In the EDS analysis, Ti, O, and C were the only three elements found in the LE surfaces. Na, Ca, Cl, and K were also observed in modSLA, in addition to Ti, O, and C. CONCLUSION. The implants showed no significant difference in biomechanical bond strength to bone in early-stage osseointegration. LE implant can be considered an excellent surface treatment method in addition to the modSLA implant and can be applied to the early loading of the prosthesis clinically.

Keywords

References

  1. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70. https://doi.org/10.3109/17453678108991776
  2. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100. https://doi.org/10.3109/02844316909036699
  3. Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Grobe A, Heiland M, Ebker T. Impact of dental implant surface modifications on osseointegration. Biomed Res Int 2016;2016:6285620.
  4. Chen CJ, Ding SJ, Chen CC. Effects of surface conditions of titanium dental implants on bacterial adhesion. Photomed Laser Surg 2016;34:379-88.
  5. Shah FA, Johansson ML, Omar O, Simonsson H, Palmquist A, Thomsen P. Laser-modified surface enhances osseointegration and biomechanical anchorage of commercially pure titanium implants for bone-anchored hearing systems. PLoS One 2016;11:e0157504. https://doi.org/10.1371/journal.pone.0157504
  6. Park SH, Park KS, Cho SA. Comparison of removal torques of SLActive implant and blasted, laser-treated titanium implant in rabbit tibia bone healed with concentrated growth factor application. J Adv Prosthodont 2016;8:110-5. https://doi.org/10.4047/jap.2016.8.2.110
  7. Junker R, Dimakis A, Thoneick M, Jansen JA. Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 2009;20:185-206. https://doi.org/10.1111/j.1600-0501.2009.01777.x
  8. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 1995;29:1567-75. https://doi.org/10.1002/jbm.820291213
  9. von Wilmowsky C, Moest T, Nkenke E, Stelzle F, Schlegel KA. Implants in bone: part I. A current overview about tissue response, surface modifications and future perspectives. Oral Maxillofac Surg 2014;18:243-57. https://doi.org/10.1007/s10006-013-0398-1
  10. Dohan Ehrenfest DM, Coelho PG, Kang BS, Sul YT, Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 2010;28:198-206. https://doi.org/10.1016/j.tibtech.2009.12.003
  11. Zinelis S, Silikas N, Thomas A, Syres K, Eliades G. Surface characterization of SLActive dental implants. Eur J Esthet Dent 2012;7:72-92.
  12. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
  13. Cochran DL, Buser D, ten Bruggenkate CM, Weingart D, Taylor TM, Bernard JP, Peters F, Simpson JP. The use of reduced healing times on ITI implants with a sandblasted and acid-etched (SLA) surface: early results from clinical trials on ITI SLA implants. Clin Oral Implants Res 2002;13:144-53. https://doi.org/10.1034/j.1600-0501.2002.130204.x
  14. Ferguson SJ, Broggini N, Wieland M, de Wild M, Rupp F, Geis-Gerstorfer J, Cochran DL, Buser D. Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. J Biomed Mater Res A 2006;78:291-7.
  15. Marin C, Bonfante EA, Granato R, Suzuki M, Granjeiro JM, Coelho PG. The effect of alterations on resorbable blasting media processed implant surfaces on early bone healing: a study in rabbits. Implant Dent 2011;20:167-77. https://doi.org/10.1097/ID.0b013e318211fb32
  16. Lee JT, Cho SA. Biomechanical evaluation of laser-etched Ti implant surfaces vs. chemically modified SLA Ti implant surfaces: Removal torque and resonance frequency analysis in rabbit tibias. J Mech Behav Biomed Mater 2016;61:299-307. https://doi.org/10.1016/j.jmbbm.2016.03.034
  17. Gaggl A, Schultes G, Muller WD, Karcher H. Scanning electron microscopical analysis of laser-treated titanium implant surfaces-a comparative study. Biomaterials 2000;21:1067-73. https://doi.org/10.1016/S0142-9612(00)00002-8
  18. Cho SA, Jung SK. A removal torque of the laser-treated titanium implants in rabbit tibia. Biomaterials 2003;24:4859-63. https://doi.org/10.1016/S0142-9612(03)00377-6
  19. Roberts WE, Smith RK, Zilberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 1984;86:95-111. https://doi.org/10.1016/0002-9416(84)90301-4
  20. Johansson C, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. Int J Oral Maxillofac Implants 1987;2:69-75.
  21. Johansson CB, Albrektsson T. A removal torque and histomorphometric study of commercially pure niobium and titanium implants in rabbit bone. Clin Oral Implants Res 1991;2: 24-9. https://doi.org/10.1034/j.1600-0501.1991.020103.x
  22. Johansson CB, Sennerby L, Albrektsson T. A removal torque and histomorphometric study of bone tissue reactions to commercially pure titanium and Vitallium implants. Int J Oral Maxillofac Implants 1991;6:437-41.
  23. Ivanoff CJ, Sennerby L, Lekholm U. Influence of mono- and bicortical anchorage on the integration of titanium implants. A study in the rabbit tibia. Int J Oral Maxillofac Surg 1996;25: 229-35. https://doi.org/10.1016/S0901-5027(96)80036-1
  24. Sennerby L, Thomsen P, Ericson LE. A morphometric and biomechanic comparison of titanium implants inserted in rabbit cortical and cancellous bone. Int J Oral Maxillofac Implants 1992;7:62-71.
  25. Albrektsson T, Branemark PI, Eriksson A, Lindstrom J. The preformed autologous bone graft. An experimental study in the rabbit. Scand J Plast Reconstr Surg 1978;12:215-23. https://doi.org/10.3109/02844317809012997
  26. Raghavendra S, Wood MC, Taylor TD. Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 2005;20:425-31.
  27. Brett PM, Harle J, Salih V, Mihoc R, Olsen I, Jones FH, Tonetti M. Roughness response genes in osteoblasts. Bone 2004;35:124-33. https://doi.org/10.1016/j.bone.2004.03.009
  28. Bagno A, Di Bello C. Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 2004; 15:935-49. https://doi.org/10.1023/B:JMSM.0000042679.28493.7f
  29. Kang SH, Cho SA. Comparison of removal torques for lasertreated titanium implants with anodized implants. J Craniofac Surg 2011;22:1491-5. https://doi.org/10.1097/SCS.0b013e31821d4d98
  30. Faeda RS, Tavares HS, Sartori R, Guastaldi AC, Marcantonio E Jr. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. J Oral Maxillofac Surg 2009;67:1706-15. https://doi.org/10.1016/j.joms.2009.03.046
  31. Rong M, Zhou L, Gou Z, Zhu A, Zhou D. The early osseointegration of the laser-treated and acid-etched dental implants surface: an experimental study in rabbits. J Mater Sci Mater Med 2009;20:1721-8. https://doi.org/10.1007/s10856-009-3730-4
  32. Donos N, Hamlet S, Lang NP, Salvi GE, Huynh-Ba G, Bosshardt DD, Ivanovski S. Gene expression profile of osseointegration of a hydrophilic compared with a hydrophobic microrough implant surface. Clin Oral Implants Res 2011;22: 365-72. https://doi.org/10.1111/j.1600-0501.2010.02113.x

Cited by

  1. Enhanced Osteointegration of Hierarchical Structured 3D-Printed Titanium Implants vol.1, pp.1, 2018, https://doi.org/10.1021/acsabm.8b00017
  2. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at Early Time Points vol.31, pp.1, 2018, https://doi.org/10.1111/clr.13546