Fig. 1. A: Linear and nonlinear functions fitted to the data of developmental rate (day-1) for total nymph period of Aphis craccivora, B: P2(T) is the probability that rate-controlling enzyme is in the active stage. The closed three squares from left to right represent the development rates at TL, Tϕ an TH. TL and TH which are temperatures at which the control enzyme has equal probability to be active or inactive by low or high temperature inactivation, and Tϕ is the intrinsic optimum temperature. C: Cumulative proportions of development completion for total nymph period of A. craccivora.
Fig. 2. Simulated temperature-dependent adult emergence of Aphis craccivora using nonlinear function.
Fig. 3. The proportional survivorship and daily fecundity (nymphs/female/day) of Aphis craccivora at six different constant temperatures. A: 10.0℃, B: 15.0℃, C: 20.0℃, D: 25.0℃, E: 30.0℃, and F: 32.5℃.
Table 1. Development time (days) for Aphis craccivora using Yardlong bean as a food at six different constant temperaturs
Table 2. Lower developmental threshold (℃) and thermal constant (DD) estimated from the linear regression for Aphis craccivora
Table 3. Parameter estimates of nonlinear developmental rate model for Aphis craccivora
Table 4. The longevity (mean ± SE) and fecundity (mean ± SE) of adult female Aphis craccivora at six different constant temperatures
Table 5. Life table parameters of Aphis craccivora at six different constant temperatures
Table 6. Temperature-dependent development data of Aphis craccivora and source references in previous studies
References
- Agunbiade, T.A., Sun, W., Coates, B.S., Djouaka, R., Tamo, M., Ba, M.N., Binso-Dabire, C., Baoua, I., Olds, B.P., Pittendrigh, B.R., 2013. Development of reference transcriptomes for the major field insect pests of cowpea: A toolbox for insect pest management approaches in West Africa. PLos ONE 8(11), e79929. https://doi.org/10.1371/journal.pone.0079929
- Barnes, A.I., Wigby, S., Boone, J.M., Partridge, L., Chapman, T., 2008. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc. R. Soc. B. 275, 1675-1683. https://doi.org/10.1098/rspb.2008.0139
- Berberet, R.C., Giles, K.L., Zarrabi, A.A., Payton, M.E., 2009. Development, reproduction and within-plant infestation patterns of Aphis craccivora (Homoptera: Aphididae) on Alfalfa. Environ. Entomol. 38(6), 1765-1771. https://doi.org/10.1603/022.038.0630
- Borowiak-Sobkowiak, B., Durak, R., Wilkaniec, B., 2017. Morphology, biology and behavioral aspects of Aphis craccivora (Hemiptera: Aphididae) on Robinia pseudoacacia. Acta. Sci. Pol. Hortorum Cultus. 16(1), 39-49. https://doi.org/10.24326/asphc.2017.5.5
- Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11(2), 431-438. https://doi.org/10.2307/2402197
- Chang, Y-D., Youn, Y-N., 1983. A study on the biology of primary parasites of the cow-pea aphid, Aphis craccivora Koch (Aphididae, Homo.) and its hyperparasites. Korean J. Plant Prot. 22(4), 237-243.
- Dixon, A.F.G., Honek, A., Kell, P., Kotela, M.A.A., Sizling, A.L., Jarosik, V., 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23, 257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
- Gutierrez, A.P., Morgan, D.J., Havenstein, D.E., 1971. The ecology of Aphis craccivora Koch and subterranean clover stunt virus. I. The phenology of aphid populations and the epidemiology of virus in pastures in South-East Australia. J. Appl. Ecol. 8(3), 699-721. https://doi.org/10.2307/2402678
- Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34(6), 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
- Jalalipour, R., Sahragard, A., Madahi, Kh., Karimi-Malati, A., 2017. Comparative life table of Aphis craccivora (Hem.: Aphididae) on host plant, Robinia pseudoacacia under natural and laboratory conditions. J. Entomol. Soc. Iran 36(4), 249-257.
- Jandel Scientific, 1994. TableCurve User's Manual San Rafael, CA.
- Jandricic, S.E., Wraight, S.P., Bennett, K.C., Sanderson, J.P., 2010. Developmental times and life table statistics of Aulacorthum solani (Hemiptera: aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models. Environ. Entomol. 39(5), 1631-1642. https://doi.org/10.1603/EN09351
- Javed, H., Iqbal, J., Mateen, Z., 2014. Response of different cultivars of groundnut, Aarachis hypogaea L. (Fabaceae: Fabales) to Aphids, Aphis craccivora K. (Aphididae: Homoptera) in interaction with local weather factors. Pak. J. Zool. 46(1), 75-81.
- Kim, D-H., Lee, G-H., Park, J-W., Hwang, C-Y., 1991. Occurrence aspects and ecological characteristics of foxglove aphid, Aulacorthum solani, Kaltenbach (Homoptera: Aphididae) in soybean. Res. Rept. RDA (Crop Prot.) 33, 28-32.
- Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56(1), 1-18. https://doi.org/10.5656/KSAE.2016.11.0.061
- Kuo, M-H., Chen, C-Y., 2004. Development and population parameters of the cowpea aphid, Aphid craccivora Koch (Hemoptera: Aphididae), at various constant temperatures. Formosan Entomol. 24, 305-315.
- Laamari, M., Khelfa, L., Coeur d'Acier, A., 2008. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. Afr. J. Biotechnol. 7(14), 2486-2490.
- Machacha, M., Obopile, M., Tshegofatso, A.B.N., Tiroesele, B., Gwafila, C., Ramokapane, M., 2012. Demographic parameters of cowpea aphid Aphis craccivora (Homoptera: Aphididae) on different Botswana cowpea landraces. Int. J. Trop. Insect Sc. 32(4), 189-193. https://doi.org/10.1017/S1742758412000318
- Maia, A.H.N., Luiz, A.J.B., Campanhola, C., 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J. Econ. Entomol. 93(2), 511-518. https://doi.org/10.1603/0022-0493-93.2.511
- Meyer, J.S., Ingersoll, C.G., McDonald, L.L., Boyce, M.S., 1986. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67(5), 1156-1166. https://doi.org/10.2307/1938671
- Nair, R.M., Craig, A.D., Auricht, G.C., Edwards, O.R., Robinson, S.S., Otterspoor, M.J., Jones, J.A., 2003. Evaluating pasture legumes for resistance to aphids. Aust. J. Agric. Res. 43(11), 1345-1349. https://doi.org/10.1071/EA03187
- Obopile, M., Ositile, B., 2010. Life table and population parameters of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) on five cowpea Vigna unguiculata (L. Walp.) varieties. J. Pest Sci. 83(1), 9-14. https://doi.org/10.1007/s10340-009-0262-0
- Park, C-G., Choi, B-R., Cho, J.R., Kim, J-H., Ahn, J.J., 2017b. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley. J. Asia-Pacific Entomol. 20(3), 767-775. https://doi.org/10.1016/j.aspen.2017.05.004
- Park, C-G., Park, H-H., Seo, B.Y., 2017a. Temperature-dependent oviposition model and life table parameters of Parominus exigus (Distant) (Hemiptera: Lygaeidae) growing on rice. Korean J. Appl. Entomol. 56(4), 387-394. https://doi.org/10.5656/KSAE.2017.11.0.032
- R Statistics, 2015. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
- Sainsbury, F., Canizares, M.C., Lomonossoff, G.P., 2010. Cowpea mosaic virus: the plant virus-based biotechnology workhorse. Annu. Rev. Phytopathol. 48, 437-455. https://doi.org/10.1146/annurev-phyto-073009-114242
- SAS Institute, 2002. SAS user's guide; statistics version 9.1ed. SAS Institute, Cary, NC.
- Saska, P., Skuhrovec, J., Lukas, J., Vlach, M., Chi, H., Tuan, S-J., Honek, A., 2017. Treating prey with glyphosate does not alter the demographic parameters and predation of the Harmonia axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 110(2), 392-399.
- Schoolfield, R.M., Sharpe, P.J.H., Magnuson, C.E., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88(4), 719-731. https://doi.org/10.1016/0022-5193(81)90246-0
- Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64(4), 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
- Shi, P-J., Reddy, G.V.P., Chen, L., Ge, F., 2017. Comparison of thermal performance equations in describing temperaturedependent developmental rates of insects: (II) two thermodynamic models. Ann. Entomol. Soc. Am. 110(1), 113-120. https://doi.org/10.1093/aesa/saw067
- Soffan, A., Aldawood, A.S., 2014. Biology and demographic parameters of cowpea aphid (Aphis craccivora) on faba bean (Vicia faba) cultivars. J. Insect Sci. 14, 1-10.
- Stoetzel, M.B., Miller, G.L., 2001. Aerial feeding aphids of corn in the United States with reference to the root-feeding Aphis maidiradicis (Homoptera: Aphididae). Fla. Entomol. 84(1), 265-277. https://doi.org/10.2307/3496178
- Sugawara, R., Ullah, M. S., Ho, C-C., Gokce, A., Chi, H., Gotoh, T., 2017. Temperature-dependent demography of two closely related predatory mites Neoseiulus womersleyi and N. longispinosus (Acari: Phytoseiidae). J. Econ. Entomol. 110(4), 1533-1546. https://doi.org/10.1093/jee/tox177
- Van der Have, T.M., 2002. A proximate model for thermal tolerance in ectotherms. Oikos 98(1), 141-155. https://doi.org/10.1034/j.1600-0706.2002.980115.x
- Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, B.N., 1984. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77(2), 208-225. https://doi.org/10.1093/aesa/77.2.208
- Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297.