DOI QR코드

DOI QR Code

Thermal Effects on the Development, Fecundity and Life Table Parameters of Aphis craccivora Koch (Hemiptera: Aphididae) on Yardlong Bean (Vigna unguiculata subsp. sesquipedalis (L.))

갓끈동부콩에서 아카시아진딧물[Aphis craccivora Koch (Hemiptera: Aphididae)]의 온도발육, 성충 수명과 산란 및 생명표분석

  • Cho, Jum Rae (Crop Protection Division, Department of Crop Life Safety, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Jeong-Hwan (Crop Protection Division, Department of Crop Life Safety, National Institute of Agricultural Sciences, RDA) ;
  • Choi, Byeong-Ryeol (Risk Management Division, Department of Plant Quarantine, Animal and Plant Quarantine Agency) ;
  • Seo, Bo-Yoon (Crop Protection Division, Department of Crop Life Safety, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Kwang-Ho (Crop Protection Division, Department of Crop Life Safety, National Institute of Agricultural Sciences, RDA) ;
  • Ji, Chang Woo (Crop Protection Division, Department of Crop Life Safety, National Institute of Agricultural Sciences, RDA) ;
  • Park, Chang-Gyu (Department of Industrial Entomology, Korea National College of Agricultural and Fisheries) ;
  • Ahn, Jeong Joon (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, RDA)
  • 조점래 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 김정환 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 최병렬 (농림축산검역본부 식물검역부 위험관리과) ;
  • 서보윤 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 김광호 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 지창우 (농촌진흥청 국립농업과학원 작물보호과) ;
  • 박창규 (국립한국농수산대학 산업곤충학과) ;
  • 안정준 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소)
  • Received : 2018.06.19
  • Accepted : 2018.09.18
  • Published : 2018.12.01

Abstract

The cowpea aphid Aphis craccivora Koch (Hemiptera: Aphididae) is a polyphagous species with a worldwide distribution. We investigated the temperature effects on development periods of nymphs, and the longevity and fecundity of apterous female of A. craccivora. The study was conducted at six constant temperatures of 10.0, 15.0, 20.0, 25, 30.0, and $32.5^{\circ}C$. A. craccivora developed successfully from nymph to adult stage at all temperatures subjected. The developmental rate of A. craccivora increased as temperature increased. The lower developmental threshold (LT) and thermal constant (K) of A. craccivora nymph stage were estimated by linear regression as $5.3^{\circ}C$ and 128.4 degree-days (DD), respectively. Lower and higher threshold temperatures (TL, TH and TH-TL, respectively) were calculated by the Sharpe_Schoolfield_Ikemoto (SSI) model as $17.0^{\circ}C$, $34.6^{\circ}C$ and $17.5^{\circ}C$. Developmental completion of nymph stages was described using a three-parameter Weibull function. Life table parameters were estimated. The intrinsic rate of increase was highest at $25^{\circ}C$, while the net reproductive rate was highest at $20^{\circ}C$. Biological characteristics of A. craccivora populations from different geographic areas were discussed.

아카시아진딧물은 다양한 기주식물을 먹이로 하는 곤충으로 전 세계적으로 분포하고 있다. 본 연구는 아카시아진딧물 약충의 발육기간, 무시성충의 수명과 번식능력을 조사하기 위하여 10.0, 15.0, 20.0, 25.0, 30.0, $32.5^{\circ}C$ 정온조건에서 실험을 실시하였다. 조사된 모든 항온조건에서 아카시아진딧물은 성공적으로 성충으로 발육하였고 발육율은 온도가 상승할수록 증가하였다. 아카시아진딧물 약충시기별 발육영점온도와 유효적산일은 선형회귀분석 방법을 이용하여 계산하였다. SSI모델을 이용하여 발육최저, 최고한계를 추정하였다. 아카시아진딧물 전체약충기간의 발육영점온도와 유효적산일은 각각 $5.3^{\circ}C$과 128.4DD였다. SSI모델을 이용한 아카시아진딧물의 발육최저, 최고온도는 $17.0^{\circ}C$$34.6^{\circ}C$였으며 이들간의 차이는 $17.5^{\circ}C$였다. 전체약충기간의 발육완료분포모형은 3-매개변수 Weibull함수를 이용하여 나타내었다. 온도와 관련된 아카시아진딧물의 생물적 특성을 생명표분석을 통해 나타내었다. 내적자연증가율은 $25^{\circ}C$에서, 개체군순증가율은 $20^{\circ}C$에서 가장 높았다. 다른 지역에 서식하는 아카시아진딧물의 생물적 특성을 비교 분석하였다.

Keywords

OOGCBV_2018_v57n4_261_f0001.png 이미지

Fig. 1. A: Linear and nonlinear functions fitted to the data of developmental rate (day-1) for total nymph period of Aphis craccivora, B: P2(T) is the probability that rate-controlling enzyme is in the active stage. The closed three squares from left to right represent the development rates at TL, Tϕ an TH. TL and TH which are temperatures at which the control enzyme has equal probability to be active or inactive by low or high temperature inactivation, and Tϕ is the intrinsic optimum temperature. C: Cumulative proportions of development completion for total nymph period of A. craccivora.

OOGCBV_2018_v57n4_261_f0002.png 이미지

Fig. 2. Simulated temperature-dependent adult emergence of Aphis craccivora using nonlinear function.

OOGCBV_2018_v57n4_261_f0003.png 이미지

Fig. 3. The proportional survivorship and daily fecundity (nymphs/female/day) of Aphis craccivora at six different constant temperatures. A: 10.0℃, B: 15.0℃, C: 20.0℃, D: 25.0℃, E: 30.0℃, and F: 32.5℃.

Table 1. Development time (days) for Aphis craccivora using Yardlong bean as a food at six different constant temperaturs

OOGCBV_2018_v57n4_261_t0001.png 이미지

Table 2. Lower developmental threshold (℃) and thermal constant (DD) estimated from the linear regression for Aphis craccivora

OOGCBV_2018_v57n4_261_t0002.png 이미지

Table 3. Parameter estimates of nonlinear developmental rate model for Aphis craccivora

OOGCBV_2018_v57n4_261_t0003.png 이미지

Table 4. The longevity (mean ± SE) and fecundity (mean ± SE) of adult female Aphis craccivora at six different constant temperatures

OOGCBV_2018_v57n4_261_t0004.png 이미지

Table 5. Life table parameters of Aphis craccivora at six different constant temperatures

OOGCBV_2018_v57n4_261_t0005.png 이미지

Table 6. Temperature-dependent development data of Aphis craccivora and source references in previous studies

OOGCBV_2018_v57n4_261_t0006.png 이미지

References

  1. Agunbiade, T.A., Sun, W., Coates, B.S., Djouaka, R., Tamo, M., Ba, M.N., Binso-Dabire, C., Baoua, I., Olds, B.P., Pittendrigh, B.R., 2013. Development of reference transcriptomes for the major field insect pests of cowpea: A toolbox for insect pest management approaches in West Africa. PLos ONE 8(11), e79929. https://doi.org/10.1371/journal.pone.0079929
  2. Barnes, A.I., Wigby, S., Boone, J.M., Partridge, L., Chapman, T., 2008. Feeding, fecundity and lifespan in female Drosophila melanogaster. Proc. R. Soc. B. 275, 1675-1683. https://doi.org/10.1098/rspb.2008.0139
  3. Berberet, R.C., Giles, K.L., Zarrabi, A.A., Payton, M.E., 2009. Development, reproduction and within-plant infestation patterns of Aphis craccivora (Homoptera: Aphididae) on Alfalfa. Environ. Entomol. 38(6), 1765-1771. https://doi.org/10.1603/022.038.0630
  4. Borowiak-Sobkowiak, B., Durak, R., Wilkaniec, B., 2017. Morphology, biology and behavioral aspects of Aphis craccivora (Hemiptera: Aphididae) on Robinia pseudoacacia. Acta. Sci. Pol. Hortorum Cultus. 16(1), 39-49. https://doi.org/10.24326/asphc.2017.5.5
  5. Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., Mackauer, M., 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11(2), 431-438. https://doi.org/10.2307/2402197
  6. Chang, Y-D., Youn, Y-N., 1983. A study on the biology of primary parasites of the cow-pea aphid, Aphis craccivora Koch (Aphididae, Homo.) and its hyperparasites. Korean J. Plant Prot. 22(4), 237-243.
  7. Dixon, A.F.G., Honek, A., Kell, P., Kotela, M.A.A., Sizling, A.L., Jarosik, V., 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23, 257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
  8. Gutierrez, A.P., Morgan, D.J., Havenstein, D.E., 1971. The ecology of Aphis craccivora Koch and subterranean clover stunt virus. I. The phenology of aphid populations and the epidemiology of virus in pastures in South-East Australia. J. Appl. Ecol. 8(3), 699-721. https://doi.org/10.2307/2402678
  9. Ikemoto, T., 2005. Intrinsic optimum temperature for development of insects and mites. Environ. Entomol. 34(6), 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
  10. Jalalipour, R., Sahragard, A., Madahi, Kh., Karimi-Malati, A., 2017. Comparative life table of Aphis craccivora (Hem.: Aphididae) on host plant, Robinia pseudoacacia under natural and laboratory conditions. J. Entomol. Soc. Iran 36(4), 249-257.
  11. Jandel Scientific, 1994. TableCurve User's Manual San Rafael, CA.
  12. Jandricic, S.E., Wraight, S.P., Bennett, K.C., Sanderson, J.P., 2010. Developmental times and life table statistics of Aulacorthum solani (Hemiptera: aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models. Environ. Entomol. 39(5), 1631-1642. https://doi.org/10.1603/EN09351
  13. Javed, H., Iqbal, J., Mateen, Z., 2014. Response of different cultivars of groundnut, Aarachis hypogaea L. (Fabaceae: Fabales) to Aphids, Aphis craccivora K. (Aphididae: Homoptera) in interaction with local weather factors. Pak. J. Zool. 46(1), 75-81.
  14. Kim, D-H., Lee, G-H., Park, J-W., Hwang, C-Y., 1991. Occurrence aspects and ecological characteristics of foxglove aphid, Aulacorthum solani, Kaltenbach (Homoptera: Aphididae) in soybean. Res. Rept. RDA (Crop Prot.) 33, 28-32.
  15. Kim, D-S., Ahn, J.J., Lee, J-H., 2017. A review for non-linear models describing temperature dependent development of insect populations: characteristics and developmental process of models. Korean J. Appl. Entomol. 56(1), 1-18. https://doi.org/10.5656/KSAE.2016.11.0.061
  16. Kuo, M-H., Chen, C-Y., 2004. Development and population parameters of the cowpea aphid, Aphid craccivora Koch (Hemoptera: Aphididae), at various constant temperatures. Formosan Entomol. 24, 305-315.
  17. Laamari, M., Khelfa, L., Coeur d'Acier, A., 2008. Resistance source to cowpea aphid (Aphis craccivora Koch) in broad bean (Vicia faba L.) Algerian landrace collection. Afr. J. Biotechnol. 7(14), 2486-2490.
  18. Machacha, M., Obopile, M., Tshegofatso, A.B.N., Tiroesele, B., Gwafila, C., Ramokapane, M., 2012. Demographic parameters of cowpea aphid Aphis craccivora (Homoptera: Aphididae) on different Botswana cowpea landraces. Int. J. Trop. Insect Sc. 32(4), 189-193. https://doi.org/10.1017/S1742758412000318
  19. Maia, A.H.N., Luiz, A.J.B., Campanhola, C., 2000. Statistical inference on associated fertility life table parameters using Jackknife technique: computational aspects. J. Econ. Entomol. 93(2), 511-518. https://doi.org/10.1603/0022-0493-93.2.511
  20. Meyer, J.S., Ingersoll, C.G., McDonald, L.L., Boyce, M.S., 1986. Estimating uncertainty in population growth rates: Jackknife vs. bootstrap techniques. Ecology 67(5), 1156-1166. https://doi.org/10.2307/1938671
  21. Nair, R.M., Craig, A.D., Auricht, G.C., Edwards, O.R., Robinson, S.S., Otterspoor, M.J., Jones, J.A., 2003. Evaluating pasture legumes for resistance to aphids. Aust. J. Agric. Res. 43(11), 1345-1349. https://doi.org/10.1071/EA03187
  22. Obopile, M., Ositile, B., 2010. Life table and population parameters of cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae) on five cowpea Vigna unguiculata (L. Walp.) varieties. J. Pest Sci. 83(1), 9-14. https://doi.org/10.1007/s10340-009-0262-0
  23. Park, C-G., Choi, B-R., Cho, J.R., Kim, J-H., Ahn, J.J., 2017b. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley. J. Asia-Pacific Entomol. 20(3), 767-775. https://doi.org/10.1016/j.aspen.2017.05.004
  24. Park, C-G., Park, H-H., Seo, B.Y., 2017a. Temperature-dependent oviposition model and life table parameters of Parominus exigus (Distant) (Hemiptera: Lygaeidae) growing on rice. Korean J. Appl. Entomol. 56(4), 387-394. https://doi.org/10.5656/KSAE.2017.11.0.032
  25. R Statistics, 2015. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
  26. Sainsbury, F., Canizares, M.C., Lomonossoff, G.P., 2010. Cowpea mosaic virus: the plant virus-based biotechnology workhorse. Annu. Rev. Phytopathol. 48, 437-455. https://doi.org/10.1146/annurev-phyto-073009-114242
  27. SAS Institute, 2002. SAS user's guide; statistics version 9.1ed. SAS Institute, Cary, NC.
  28. Saska, P., Skuhrovec, J., Lukas, J., Vlach, M., Chi, H., Tuan, S-J., Honek, A., 2017. Treating prey with glyphosate does not alter the demographic parameters and predation of the Harmonia axyridis (Coleoptera: Coccinellidae). J. Econ. Entomol. 110(2), 392-399.
  29. Schoolfield, R.M., Sharpe, P.J.H., Magnuson, C.E., 1981. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J. Theor. Biol. 88(4), 719-731. https://doi.org/10.1016/0022-5193(81)90246-0
  30. Sharpe, P.J.H., DeMichele, D.W., 1977. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64(4), 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
  31. Shi, P-J., Reddy, G.V.P., Chen, L., Ge, F., 2017. Comparison of thermal performance equations in describing temperaturedependent developmental rates of insects: (II) two thermodynamic models. Ann. Entomol. Soc. Am. 110(1), 113-120. https://doi.org/10.1093/aesa/saw067
  32. Soffan, A., Aldawood, A.S., 2014. Biology and demographic parameters of cowpea aphid (Aphis craccivora) on faba bean (Vicia faba) cultivars. J. Insect Sci. 14, 1-10.
  33. Stoetzel, M.B., Miller, G.L., 2001. Aerial feeding aphids of corn in the United States with reference to the root-feeding Aphis maidiradicis (Homoptera: Aphididae). Fla. Entomol. 84(1), 265-277. https://doi.org/10.2307/3496178
  34. Sugawara, R., Ullah, M. S., Ho, C-C., Gokce, A., Chi, H., Gotoh, T., 2017. Temperature-dependent demography of two closely related predatory mites Neoseiulus womersleyi and N. longispinosus (Acari: Phytoseiidae). J. Econ. Entomol. 110(4), 1533-1546. https://doi.org/10.1093/jee/tox177
  35. Van der Have, T.M., 2002. A proximate model for thermal tolerance in ectotherms. Oikos 98(1), 141-155. https://doi.org/10.1034/j.1600-0706.2002.980115.x
  36. Wagner, T.L., Wu, H.I., Sharpe, P.J.H., Schoolfield, R.M., Coulson, B.N., 1984. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 77(2), 208-225. https://doi.org/10.1093/aesa/77.2.208
  37. Weibull, W., 1951. A statistical distribution functions with wide applicability. J. Appl. Mech. 18, 293-297.