DOI QR코드

DOI QR Code

A Study on the Fabrication and Comparison of the Phantom for CT Dose Measurements Using 3D Printer

3D프린터를 이용한 CT 선량측정 팬텀 제작 및 비교에 관한 연구

  • Yoon, Myeong-Seong (Department of Radiology Science, Health Sciences College, Eulji University) ;
  • Kang, Seong-Hyeon (Department of Radiology Science, Health Sciences College, Eulji University) ;
  • Hong, Soon-Min (Device Development Team, GreenCross Medical Science) ;
  • Lee, Youngjin (Department of Radiology Science, Gachon University) ;
  • Han, Dong-Koon (Department of Radiology Science, Health Sciences College, Eulji University)
  • 윤명성 (을지대학교 보건과학대학 방사선학과) ;
  • 강성현 (을지대학교 보건과학대학 방사선학과) ;
  • 홍순민 (녹십자MS 기기개발팀) ;
  • 이영진 (가천대학교 방사선학과) ;
  • 한동균 (을지대학교 보건과학대학 방사선학과)
  • Received : 2018.11.17
  • Accepted : 2018.11.30
  • Published : 2018.11.30

Abstract

Patient exposure dose exposure test, which is one of the items of accuracy control of Computed Tomography, conducts measurements every year based on the installation and operation of special medical equipment under Article 38 of the Medical Law, And keep records. The CT-Dose phantom used for dosimetry can accurately measure doses, but has the disadvantage of high price. Therefore, through this research, the existing CT - Dose phantom was similarly manufactured with a 3D printer and compared with the existing phantom to examine the usefulness. In order to produce the same phantom as the conventional CT-Dose phantom, a 3D printer of the FFF method is used by using a PLA filament, and in order to calculate the CTDIw value, Ion chambers were inserted into the central part and the central part, and measurements were made ten times each. Measurement results The CT-Dose phantom was measured at $30.44{\pm}0.31mGy$ in the periphery, $29.55{\pm}0.34mGy$ CTDIw value was measured at $30.14{\pm}0.30mGy$ in the center, and the phantom fabricated using the 3D printer was measured at the periphery $30.59{\pm}0.18mGy$, the central part was $29.01{\pm}0.04mGy$, and the CTDIw value was measured at $30.06{\pm}0.13mGy$. Analysis using the Mann - Whiteney U-test of the SPSS statistical program showed that there was a statistically significant difference in the result values in the central part, but statistically significant differences were observed between the peripheral part and CTDIw results I did not show. In conclusion, even in the CT-Dose phantom made with a 3D printer, we showed dose measurement performance like existing CT-Dose phantom and confirmed the possibility of low-cost phantom production using 3D printer through this research did it.

전산화 단층촬영 장치의 정 도관리 항목 중 하나인 환자 피폭선량 피폭 시험은 의료법 제38조 특수의료장비 설치 및 운영에 따라 1년마다 측정을 시행하고 기록을 보관해야 한다. 선량 측정을 위해 사용되고 있는 CT-Dose 팬텀은 정확한 선량 측정이 가능하지만 가격이 비싸다는 단점이 있다. 따라서 본 연구를 통해 기존의 CT-Dose 팬텀을 3D프린터로 유사하게 제작하여 기존의 팬텀과 비교 분석하고 유용성을 알아보았다. 기존의 CT-Dose팬텀과 동일한 팬텀을 제작하기위해 PLA 필라멘트를 이용하여 FFF 방식의 3D프린터를 이용하였으며, CTDIw 값을 산출하기 위해 팬텀의 주변부와 중앙부에 이온챔버를 삽입하여 각 10번씩 측정하였다. 측정결과 주변부는 CT-Dose팬텀 $30.44{\pm}0.31mGy$, 중앙부는 $29.55{\pm}0.34mGy$ CTDIw값은 $30.14{\pm}0.30mGy$로 측정되었고, 3D프린터를 이용하여 제작된 팬텀은 주변부 $30.59{\pm}0.18mGy$, 중앙부 $29.01{\pm}0.04mGy$, CTDIw값은 $30.06{\pm}0.13mGy$로 측정되었다. SPSS 통계 프로그램의 Mann- Whiteney U-test를 사용하여 분석한 결과 중앙부의 결과 값은 통계적으로 유의한 차이가 있었지만 주변부와 CTDIw의 결과 값은 통계적으로 유의한 차이를 나타내지 않았다. 결론적으로, 3D프린터를 이용하여 제작된 팬텀으로 기존의 CT-Dose 팬텀과 유사한 선량측정 성능을 보였으며, 본 연구를 통해 3D프린터를 이용한 저비용의 팬텀 제작의 가능성을 확인할 수 있었다.

Keywords

BSSHB5_2018_v12n6_737_f0001.png 이미지

Fig. 1. Equipment used in experiment.

BSSHB5_2018_v12n6_737_f0002.png 이미지

Fig. 2. Equipment used in experiment.

BSSHB5_2018_v12n6_737_f0003.png 이미지

Fig. 3. 3D Printing process.

BSSHB5_2018_v12n6_737_f0004.png 이미지

Fig. 4. Phantom Imaging for Experiments.

Table 1. Post Production Physical prooerties

BSSHB5_2018_v12n6_737_t0001.png 이미지

Table 2. Set-up of 3D-printer

BSSHB5_2018_v12n6_737_t0002.png 이미지

Table 3. Dose phantom production settings

BSSHB5_2018_v12n6_737_t0003.png 이미지

Table 4. CT number Measurement result

BSSHB5_2018_v12n6_737_t0004.png 이미지

Table 5. CT- Dose Measurement result

BSSHB5_2018_v12n6_737_t0005.png 이미지

References

  1. D. W. Kim, H, S. Kim, S. O. Park, "Textbook of Computed Tomography, " Dae-hak Publishing co. 2010.
  2. I. H. Ko, K. K. Kim, D. Y. Kim, "Textbook of Computed Tomography, " Chung-ku Publishing co. 2005.
  3. http://opendata.hira.or.kr
  4. O. T. Kwon, "Selection criteria of medical equipment requiring quality control and selection of priority medical equipment," Health Insurance Review &Assessment Service, Vol. 12, No. 3, pp. 33-48, 2018.
  5. W. Jang, S. J. Han, "Current status and main issues of Korean medical resources in OECD statistics," Health Insurance Review & Assessment Service, Vol. 12, No. 4, pp. 7-16, 2018.
  6. United Nation Scientific Committee on the Effect of Atomic Radiation, "2000 report to the general assembly, annex D: medical radiation exposure," New York, NY: United Nation, 2000.
  7. Mettler FA, Jr., Wiest PW, Locken JA, Kelsey CA. "CT scanning: patterns of use and dose," Journal of Radiological Protection, 2000.
  8. Ministry of health and welfare, "Regulations on the installation and operation of special medical equipment, Ordinance No. 146 of the Ministry of Health and Welfare," 2012.
  9. Sagara Y, Hara AK, Pavlicek W, Silva AC, Paden RG, Wu Q, "Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients," American journal of roentgenology, Vol. 195, No. 3, pp 713-9, 2010. https://doi.org/10.2214/AJR.09.2989
  10. Rehani M, Berry M, "Radiation dose in computed tomography Editiorial," BMJ Clinical research ed., 2000.
  11. D. K. Han, S. K. Ko, H. J, Yang, M.C. Kim, "The Evaluation of Image Quality and Radiation Dose in Multi-Detector CT," Journal of radiological science and technology. Vol. 30. No. 2. pp. 129-38, 2007.
  12. K. K. Kim, "STUDY ON MEASURING SCAN PARAMETER OF CTDI(COMPUTED TOMO GRAPHY DOSE INDEX)," Korea University, 2011.
  13. W. K. Oh, K. S. Lim, T. S. Lee, "Additive Manufacturing of Patient-specific Femur Via 3D Printer Using Computed Tomography Images," Journal of the Korean Society of Radiology, Vol. 7, No. 5, pp. 359-64, 2013. https://doi.org/10.7742/jksr.2013.7.5.359
  14. Y. H. Seong, "Comparison of Hounsfield Units by Changing in Size of Physical Area and SettingSize of Region of Interest by Using the CT Phantom Made with a 3D Printer," Journal of Radiological Science and Technology, Vol. 38, No. 4, pp 421-427, 2015 https://doi.org/10.17946/JRST.2015.38.4.12
  15. W. J. Choi, D. H. Kim, "Making Human Phantom for X-ray Practice with 3D Printing," Journal Korean Society Radiology, Vol. 11, No. 5, pp. 371-7, October 2017. https://doi.org/10.7742/JKSR.2017.11.5.371
  16. J. N. Seo, J. E. Nha, S. M. Bae, "A phantom production by using 3-dimentional printer andIn-vivo dosimetry for a prostate cancer patient," ournal of Kkorean Society for Radiotherapeutic Technology, Vol. 27, No. 1, pp. 53-60, 2015.