DOI QR코드

DOI QR Code

NSGT-based acoustical wave dispersion characteristics of thermo-magnetically actuated double-nanobeam systems

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Dabbagh, Ali (School of Mechanical Engineering, College of Engineering, University of Tehran)
  • 투고 : 2018.05.18
  • 심사 : 2018.11.07
  • 발행 : 2018.12.25

초록

Herein, the thermo-magneto-elastic wave dispersion answers of functionally graded (FG) double-nanobeam systems (DNBSs) are surveyed implementing a nonlocal strain gradient theory (NSGT). The kinematic relations are derived employing the classical beam theory. Also, scale influences are covered precisely in the framework of NSGT. Moreover, Mori-Tanaka homogenization model is introduced in order to obtain the effective material properties of FG nanobeams. Meanwhile, effects of external forces such as thermal and Lorentz forces are included in this research. Also, based upon the Hamilton's principle, the Euler-Lagrange equations are developed; afterwards, these equations are incorporated with those of NSGT to reach the nonlocal governing equations of FG-DNBSs. Furthermore, according to an analytical approach, the governing equations are solved to obtain the wave frequencies and phase velocities of FG-DNBSs. At the end, some illustrations are rendered to clarify the influences of a wide range of involved parameters.

키워드

참고문헌

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of fgm sandwich plates with various boundary conditions", Steel Compos. Struct., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), "A novel quasi-3d trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Alzahrani, E.O., Zenkour, A.M. and Sobhy, M. (2013), "Small scale effect on hygro-thermo-mechanical bending of nanoplates embedded in an elastic medium", Compos. Struct., 105, 163-172. https://doi.org/10.1016/j.compstruct.2013.04.045
  4. Ansari, R., Arash, B. and Houhi, H. (2011), "Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity", Compos. Struct., 93(9), 2419-2429. https://doi.org/10.1016/j.compstruct.2011.04.006
  5. Arefi, M. and Zenkour, A. (2017), "Analysis of wave propagation in a functionally graded nanobeam resting on visco-pasternak's foundation", Theoret. Appl. Mech. Lett., 7(3), 145-151. https://doi.org/10.1016/j.taml.2017.05.003
  6. Barati, M.R. (2017), "On wave propagation in nanoporous materials", Int. J. Eng. Sci., 116, 1-11. https://doi.org/10.1016/j.ijengsci.2017.03.007
  7. Barati M.R. and Zenkour, A. (2017), "A general bi-helmholtz nonlocal strain-gradient elasticity for wave propagation in nanoporous graded double-nanobeam systems on elastic substrate", Compos. Struct., 168, 885-892. https://doi.org/10.1016/j.compstruct.2017.02.090
  8. Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
  9. Boukhari, A., Atmane, H.A., Tounsi, A., Adda B. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/SEM.2016.57.5.837
  10. Daneshmehr, A. and Rajabpoor, A. (2014), "Stability of size dependent functionally graded nanoplate based on nonlocal elasticity and higher order plate theories and different boundary conditions", Int. J. Eng. Sci., 82, 84-100. https://doi.org/10.1016/j.ijengsci.2014.04.017
  11. Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870. https://doi.org/10.1080/15376494.2012.677098
  12. Ebrahimi F. and Barati, M.R. (2016a), "Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position", J. Therm. Stress., 39(10), 1210-1229. https://doi.org/10.1080/01495739.2016.1215726
  13. Ebrahimi, F. and Barati, M.R. (2016b), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
  14. Ebrahimi, F. and Barati, M.R. (2017a), "Flexural wave propagation analysis of embedded s-fgm nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 42(5), 1715-1726. https://doi.org/10.1007/s13369-016-2266-4
  15. Ebrahimi, F. and Barati, M.R. (2017b), "Hygrothermal effects on vibration characteristics of viscoelastic fg nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092
  16. Ebrahimi, F. and Barati, M.R. (2017c), "Through-the-length temperature distribution effects on thermal vibration analysis of nonlocal strain-gradient axially graded nanobeams subjected to nonuniform magnetic field", J. Therm. Stress., 40(5), 548-563. https://doi.org/10.1080/01495739.2016.1254076
  17. Ebrahimi F. and Barati, M.R. (2018a), "Nonlocal strain gradient theory for damping vibration analysis of viscoelastic inhomogeneous nano-scale beams embedded in visco-pasternak foundation", J. Vibr. Contr., 24(10), 2080-2095. https://doi.org/10.1177/1077546316678511
  18. Ebrahimi F. and Barati, M.R. (2018b), "Scale-dependent effects on wave propagation in magnetically affected single/double-layered compositionally graded nanosize beams", Waves Rand. Complex Med., 28(2), 326-342. https://doi.org/10.1080/17455030.2017.1346331
  19. Ebrahimi, F. and Dabbagh, A. (2018a), "On wave dispersion characteristics of double-layered graphene sheets in thermal environments", J. Electromagnet. Waves Appl., 32(15), 1869-1888. https://doi.org/10.1080/09205071.2017.1417918
  20. Ebrahimi F., Barati, M.R. and Dabbagh, A. (2018), "Wave propagation in embedded inhomogeneous nanoscale plates incorporating thermal effects", Waves Rand. Complex Med., 28(2), 215-235. https://doi.org/10.1080/17455030.2017.1337281
  21. Ebrahimi, F., Barati, M.R. and Haghi, P. (2016b), "Nonlocal thermo-elastic wave propagation in temperature-dependent embedded small-scaled nonhomogeneous beams", Eur. Phys. J. Plus, 131(11), 383. https://doi.org/10.1140/epjp/i2016-16383-0
  22. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017a), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Therm. Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
  23. Ebrahimi, F., Barati, M.R. and Haghi, P. (2017b), "Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory", J. Vibr. Contr., 1077546317711537. https://doi.org/10.1177/1077546317711537
  24. Ebrahimi, F. and Hosseini, S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
  25. Ebrahimi, F. and Rastgoo, A. (2009), "Fsdpt based study for vibration analysis of piezoelectric coupled annular fgm plate", J. Mech. Sci. Technol., 23(8), 2157-2168. https://doi.org/10.1007/s12206-009-0433-1
  26. Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of fg nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stress., 38(12), 1360-1386. https://doi.org/10.1080/01495739.2015.1073980
  27. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  28. Esfahani, S., Kiani, Y. and Eslami, M. (2013), "Non-linear thermal stability analysis of temperature dependent fgm beams supported on non-linear hardening elastic foundations", Int. J. Mech. Sci., 69, 10-20. https://doi.org/10.1016/j.ijmecsci.2013.01.007
  29. Farajpour, A., Yazdi, M.H., Rastgoo, A. and Mohammadi, M. (2016), "A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment", Acta Mech., 227(7), 1849-1867. https://doi.org/10.1007/s00707-016-1605-6
  30. Fleck, N. and Hutchinson, J. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Sol., 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  31. Ghiasian, S., Kiani, Y., Sadighi, M. and Eslami, M. (2014), "Thermal buckling of shear deformable temperature dependent circular/annular fgm plates", Int. J. Mech. Sci., 81, 137-148. https://doi.org/10.1016/j.ijmecsci.2014.02.007
  32. Hosseini, M. and Jamalpoor, A. (2015), "Analytical solution for thermomechanical vibration of double-viscoelastic nanoplatesystems made of functionally graded materials", J. Therm. Stress., 38(12), 1428-1456. https://doi.org/10.1080/01495739.2015.1073986
  33. Hosseini, S. and Rahmani, O. (2016), "Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity", J. Therm. Stress., 39(10), 1252-1267. https://doi.org/10.1080/01495739.2016.1215731
  34. Kargani, A., Kiani, Y. and Eslami, M. (2013), "Exact solution for nonlinear stability of piezoelectric fgm timoshenko beams under thermo-electrical loads", J. Therm. Stress., 36(10), 1056-1076. https://doi.org/10.1080/01495739.2013.818888
  35. Kiani, K. (2014), "Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories", Phys. E: Low-Dimens. Syst. Nanostruct., 57, 179-192. https://doi.org/10.1016/j.physe.2013.10.034
  36. Lam, D.C., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Sol., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  37. Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013
  38. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011
  39. Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
  40. Li, L., Hu, Y. and Li, X. (2016a), "Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory", Int. J. Mech. Sci., 115, 135-144.
  41. Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
  42. Li, L., Hu, Y. and Ling, L. (2016b), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Phys. E: Low-Dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
  43. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
  44. Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Sol., 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
  45. Mahinzare, M., Mohammadi, K., Ghadiri, M. and Rajabpour, A. (2017), "Size-dependent effects on critical flow velocity of a swcnt conveying viscous fluid based on nonlocal strain gradient cylindrical shell model", Microfluid. Nanofluid., 21(7), 123. https://doi.org/10.1007/s10404-017-1956-x
  46. Narendar, S. and Gopalakrishnan, S. (2012), "Temperature effects on wave propagation in nanoplates", Compos. Part B: Eng., 43(3), 1275-1281. https://doi.org/10.1016/j.compositesb.2011.11.029
  47. Pradhan, S. and Murmu, T. (2010), "Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory", Phys. E: Low-Dimens. Syst. Nanostruct., 42(5), 1293-1301. https://doi.org/10.1016/j.physe.2009.10.053
  48. Preethi, K., Raghu, P., Rajagopal, A. and Reddy, J. (2018), "Nonlocal nonlinear bending and free vibration analysis of a rotating laminated nano cantilever beam", Mech. Adv. Mater. Struct., 25(5), 439-450. https://doi.org/10.1080/15376494.2016.1278062
  49. Reddy, J. and Pang, S. (2008), "Nonlocal continuum theories of beams for the analysis of carbon nanotubes", J. Appl. Phys., 103(2), 023511. https://doi.org/10.1063/1.2833431
  50. Stolken, J.S. and Evans, A. (1998), "A microbend test method for measuring the plasticity length scale", Acta Mater., 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
  51. Thai, H.T.and Vo, T.P. (2012), "Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories", Int. J. Mech. Sci., 62(1), 57-66. https://doi.org/10.1016/j.ijmecsci.2012.05.014
  52. Tylikowski, A. (2012), "Instability of thermally induced vibrations of carbon nanotubes via nonlocal elasticity", J. Therm. Stress., 35(1-3), 281-289. https://doi.org/10.1080/01495739.2012.637831
  53. Wang, Y., Li, F.M. and Wang, Y.Z. (2015), "Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory", Phys. E: Low-Dimens. Syst. Nanostruct., 67, 65-76. https://doi.org/10.1016/j.physe.2014.11.007
  54. Zenkour, A.M. (2016), "Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium", Phys. E: Low-Dimens. Syst. Nanostruct., 79, 87-97. https://doi.org/10.1016/j.physe.2015.12.003
  55. Zhu, X. and Li, L. (2017), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
  56. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of fgm plates under hygro-thermomechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

피인용 문헌

  1. On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes vol.95, pp.3, 2018, https://doi.org/10.1088/1402-4896/ab43b6