Figure 1. Photograph of sewage sludge sample derived from ‘E’ sewage treatment plant.
Figure 2. Manufacturing procedure of sewage sludge adsorbent.
Figure 3. Schematic diagram of H2S adsorption test reactor.
Figure 4. Effect of the carbonization temperature on H2S adsorption amount of H2S (g/g) for carbonized sludge adsorbents (Experimental condition: H2S = 20 ppm, O2 = 21%, R.H = 50-60%, adsorbent loadings = 0.03 g).
Figure 5. Effect of the active material coating on H2S adsorption amount of H2S (g/g) for carbonized sludge adsorbents (Experimental condition: H2S = 20 ppm, O2 = 21%, R.H = 50-60%, adsorbent loadings = 0.03 g).
Figure 6. Pore size distributions of different temperature carbonized sludge adsorbents.
Figure 7. SEM images of different temperature carbonized sludge adsorbents. A: 550CS, B: 700CS, C: 900CS, D: K/900CS.
Figure 8. Effect of the carbonization heating rate on H2S adsorption amount of H2S (g/g) for carbonized sludge adsorbents (Experimental condition: H2S = 20 ppm, O2 = 21%, R.H = 50-60%, adsorbent loadings = 0.03 g).
Figure 9. Pore size distribution of different carbonization heating rate sludge adsorbents.
Figure 10. SEM images of different carbonization heating rate sludge adsorbents. A: 900CS (5), B: 900CS (10), C: 900CS (20).
Figure 11. Effect of the KOH activation on H2S adsorption amount of H2S (g/g) for carbonized sludge adsorbents (Experimental condition: H2S = 20 ppm, O2 = 21%, R.H = 50-60%, adsorbent loadings = 0.03 g).
Table 1. Concentration of Hydrogen Sulfide and Gas Composition by Source
Table 2. Proximate Analysis of Sewage Sludge Sample
Table 3. Manufacturing Conditions of Sewage Sludge Adsorbent Samples
Table 4. Experimental Condition in a Fixed Bed Reactor
Table 5. BET Analysis Results of Different Temperature Carbonized Sludge Adsorbents
Table 6. BET Analysis Results of Different Carbonization Heating Rate Sludge Adsorbents
References
- J. S. Park, A study on the development of gas scrubber for removal of odor gas containing hydrogen sulfide and the ammonia, MS Dissertation, Inje University, Gimhae, Korea (2002).
- K. Y. Kim and J. H. Choi, Distribution characteristics of odorous compounds concentrations according to type of pig buildings, J. Korean Soc. Odor Res. Eng., 12(1), 27-37 (2013). https://doi.org/10.11161/jkosore.2013.12.1.27
- H. W. Ryu, K. S. Jo, T. H. Lee, and M. Huh, Management of offensive odors in swine production facilities: I. Domestic status and offensive odors in swine production, J. Korean Soc. Odor Res. Eng., 2(2), 69-77 (2003).
- G. Y. Kim, J. B. Park, C. N. Kim, and K. J. Lee, Field study of emission characteristics of ammonia and hydrogen sulfide by pig building type, J. Korean. Soc. Occup. Environ. Hyg., 16(1), 36-43 (2016).
- B. C. Ko, J. K. Lee, Y. S. Lee, M. G. Lee, and S. K. Kam, A study on odor emission characteristics of domestic sewage treatment facilities using composite odor concentration and hydrogen sulfide concentration, J. Environ. Sci., 21(11), 1379-1388 (2012).
- J. K. Kim, S. S Kim, S. C. Hong, E. D. Lee, and Y. Kang, Decomposition of EtOH and oxidation of H2S by using UV/photocatalysis system, Korean Chem. Eng. Res., 51(3), 297-302 (2013). https://doi.org/10.9713/kcer.2013.51.3.297
- C. K. Jung, Utilization of discarded tree debris for commercial production of activated carbon, final research report, Ministry of Agriculture, Food and Rural Affairs, Korea (2000).
- C. D. Park, J. Y. Youn, and Y. S. Park, Adsorption characteristics of H2S on adsorbent made by sewage sludge in fixed bed adsorption column, Korean Chem. Eng. Res., 50(4), 718-722 (2012). https://doi.org/10.9713/kcer.2012.50.4.718
- D. H. Jung, W. S. Baek, S. H. Kim, and Y. N. Chun, Adsorption characteristics of sewage sludge prepared by physical and chemical activation, J. Adv. Eng. Technol., 1(1), 91-97 (2008).
-
J. B. Cho, H. Jang, M. J. Sohn, M. G. Kim, S. J. Kim, and S. C. Han, Study on removal feasibility of nitrogeneous malodor compounds using
$AlPO_4$ zeolite manufactured from total phosphorus sludge, J. Korea Soc. Waste Manag., 30(7), 734-740 (2013). https://doi.org/10.9786/kswm.2013.30.7.734 - J. H. Bae, N. Y. Park, C. H. Lee, Y. K. Park, and J. K. Jeon, Adsorption performance of basic gas over pellet-type adsorbents prepared from water treatment sludge, Korean Chem. Eng. Res., 51(3), 352-357 (2013). https://doi.org/10.9713/kcer.2013.51.3.352
- D. H. Jung, M. S. Lim, J. S. Song, and Y. N. Chun, Development of a carbonization activator, J. Korean Ind. Eng. Chem., 20(1), 109-115 (2009).
- S. Y. Lee, A study on the surface characteristics and adsorption properties in carbonaceous materials. MS dissertation, Seoul National University of Technology, Seoul, Korea (2003).
-
Y. C. Park, G. J. Jo, and J. H. Choe, Production and
$CO_2$ adsorption characteristics of activated carbon from bamboo by$CO_2$ activation method, Korean Chem. Eng. Res., 43(1), 146-152 (2005). - G. C. Lee, T. K. Yoon, and Z. H. Shon, Effect of operating parameters on the physical properties of activated carbon manufactured with bead-type polymer resin, Clean Technol., 19(3), 279-286 (2013). https://doi.org/10.7464/ksct.2013.19.3.279
- B. Krystyna, B. Wieslaw, and K. Marek, Carbon adsorbents from waste ion-exchange resin, Carbon, 40(12), 2213-2220 (2002). https://doi.org/10.1016/S0008-6223(02)00091-X
- K. Y. Cho, K. J. Kim, and D. H. Riu, Effect of heating rate and pressure on pore growth of porous carbon Materials, Carbon Sci., 7(4), 271-276 (2006).
-
S. K. Lee, C. S. Yim, and Y. S. Park,
$H_2S$ adsorption characteristics and property analyses of activated carbon adsorbent impregnated with basic solutions, J. Korean Soc. Environ. Eng., 32(11), 1011-1016 (2010).
Cited by
- 활성탄 흡착탑의 실용화를 위한 최적 유동특성 선정 및 열처리 조건에 따른 황화수소 포집능 향상 연구 vol.32, pp.1, 2021, https://doi.org/10.14478/ace.2020.1084