Figure 1. The photography of Li/Fe ingot (a) and Li anode (b).
Figure 4. SEM image of Fe powder.
Figure 2. A single cell test assembly.
Figure 6. Single cell discharge performances of Li Anode by Li contents.
Figure 7. Single cell discharge comparison for Li anode and Li(Si) anode.
Figure 8. Total polarization comparison for Li anode and Li(Si) anode single cell.
Figure 9. Discharge performance of Li anode and Li(Si) anode thermal battery at room temperature.
Figure 10. Discharge performance of Li anode and Li(Si) anode thermal battery at high temperature (+ 63 ℃).
Figure 3. The design of Φ75 × L165 mm thermal battery (a) and Φ75 × L130 mm thermal battery (b).
Figure 5. SEM image of Li (17 wt%) anode (a), Li 15 wt% (b), and Li 13 wt% (c).
Table 1. Properties of the Electrodes
Table 2. Discharge Results of Li Anode and Li(Si) Anode Single Cells
Table 3. Discharge Results of Li Anode and Li(Si) Anode Thermal Batteries at Room and High Temperature
참고문헌
- R. A. Guidotti and P. Masset, Thermally activated ("thermal") battery technology. Part 1: An overview, J. Power Sources, 161, 1443-1449 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.013
-
Y. S. Choi, S. B. Cho, and Y. S. Lee, Effect of the addition of carbon black and carbon nanotube to
$FeS_{2}$ cathode on the electrochemical performance of thermal battery, J. Ind. Eng. Chem., 20, 3584-3589 (2014). https://doi.org/10.1016/j.jiec.2013.12.052 -
Y. S. Choi, H. R. Yu, H. W. Cheong, S. B. Cho, and Y. S. Lee, Effects of pyrite (
$FeS_{2}$ ) particle sizes on electrochemical characteristics of thermal batteries, Appl. Chem. Eng., 25, 161-166 (2014). https://doi.org/10.14478/ace.2013.1123 - D. E. Reisner, T. D. Xiao, H. Ye, J. Dai, R. A. Guidotti, and F. W. Reinhardt, Thermal-sprayed thin film cathodes for thermal battery, J. New Mater. Electrochem. Syst., 2, 279-282 (1999).
- A. G. Gevorkyan, R. Cohen, and O. Raz, Recent advances in thin film based thermal batteries, 47th Power Sources Conference, 390-392, Orlando, FL, USA (2016).
- D. Harney, Thin film thermal batteries, 44th Power Sources Conference, 669-671, Las Vegas, NV, USA (2010).
- R. A. Guidotti and P. Masset, Thermally activated ("thermal") battery technology. Part 4: Anode materials, J. Power Sources, 183, 388-398 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.090
- G. C. Bowser and J. R. Moser, Molten metal anode, US Patent 3,930,888 (1976).
- D. Machodo, S. Golan, I. Londner, and E. Jacobsohn, Fe-Li-Al anode composite and termal battery containing the same, US Patent 7,354,678 (2008).
- J. D. Briscoe, E. Durliat, F. Salver-Disma, and I. Stewart, Comparison of the different anode technologies used in thermal batteries, 42nd Power Sources Conference, 117-120, Philadelphia, PA, USA (2006).
- A. J. Clark, C. Thaler, I. Stewart, and J. Reid, Advances in high-energy-density immobilized lithium anode thermal batteries, 39th Power Sources Conference, June, Cherry Hill, USA (2000).
- J. R. Sweeney, I. Mckirdy, R. Comrie, and I. Stewart, Some advances in the application of thermal battery technology, Aerospace Energetic Equipment Conference, Avignon, France (2004).
- Y. S. Choi, H. R. Yu, and H. W. Cheong, Electrochemical properties of a lithium-impregnated metal foam anode for thermal batteries, J. Power Sources, 276, 102-104 (2015). https://doi.org/10.1016/j.jpowsour.2014.11.103
- V. Klasons and C. M. Lamb, Thermal batteries, in: D. Linden and T. B. Reddy (eds.), Handbook of Batteries, 21.1-21.22, McGraw-Hill, USA (2002).
- P. Masset and R. A. Guidotti, Thermal activated ("thermal") battery technology part IIIa: FeS2 cathode material, J. Power Sources, 177, 509-609 (2008).
- S. Fujiwara, M. Inaba, and A. Tasaka, New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr, J. Power Sources, 196, 4012-4018 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.009
- P. Masset, S. Schoeffert, J. Y. Poinso, and J. C. Poignet, LiF-LiCl-LiI vs. LiF-LiBr-KBr as molten salt electrolyte in thermal batteries, J. Electrochem. Soc., 152(2), A405-A410 (2005). https://doi.org/10.1149/1.1850861
- S. Fujiwara, M. Inaba, and A. Tasaka, Now molten salt systems for hig-temperature molten salt batteries: LiF-LiCl-LiBr-based quaternary systems, J. Power Sources, 195(22), 7691-7700 (2010). https://doi.org/10.1016/j.jpowsour.2010.05.032