DOI QR코드

DOI QR Code

Recent Advances in Cathode and Anode Materials for Lithium Ion Batteries

리튬 이온 배터리용 양극 및 음극 재료의 최근 동향

  • Nguyen, Van Hiep (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Young Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2018.09.06
  • Accepted : 2018.09.20
  • Published : 2018.12.10

Abstract

Lithium ion batteries have been broadly used in various applications to our daily life such as portable electronics, electric vehicles and grid-scale energy storage devices. Significant efforts have recently been made on developing electrode materials for lithium ion batteries that meet commercial needs of the high energy density, light weight and low cost. In this review, we summarize the principles and recent research advances in cathode and anode materials for lithium ion batteries, and particularly emphasize electrode material designs and advanced characterization techniques.

리튬 이온 배터리는 휴대용 전자 제품, 전기 자동차 및 그리드 규모의 에너지 저장 장치 등과 같이 일상 생활에서 다양한 용도로 널리 사용되고 있다. 최근 높은 에너지 밀도, 경량 및 저비용과 같은 상업적 요구를 만족하는 리튬 이온 배터리 전극 소재 개발을 위하여 상당한 노력이 진행되어 오고 있다. 이 총설에서는 리튬 이온 배터리 양극 및 음극 재료의 원리와 최근 연구 동향을 요약하였으며, 특히 전극 소재의 설계 및 고급 특성화 기술을 강조하였다.

Keywords

GOOOB2_2018_v29n6_635_f0001.png 이미지

Figure 1. Discharge potentials and specific capacity of some of the most common (a) cathodes and (b) anodes (reproduced from[4]).

GOOOB2_2018_v29n6_635_f0002.png 이미지

Figure 2. Layered lithium transition metal oxide structure of LiCoO2 (red: oxygen, blue: cobalt, green: lithium).

GOOOB2_2018_v29n6_635_f0003.png 이미지

Figure 3. NCM product overview (reproduced from[21]).

GOOOB2_2018_v29n6_635_f0004.png 이미지

Figure 4. Spinel structure of LiMn2O4 (red: oxygen, purple: manganese, green: lithium).

GOOOB2_2018_v29n6_635_f0005.png 이미지

Figure 5. Olivine structure of LiFePO4 (red: oxygen, light purple: phosphorus, brown yellow: iron, green: lithium).

GOOOB2_2018_v29n6_635_f0006.png 이미지

Figure 6. (a) TEM images of LTO/C, (b) high-resolution images of the areas marked in red dashed circles, (c) cycling performance of LTO anode at a 0.5 C rate, and (d) rate capabilities of LTO anode (reproduced from[64]).

GOOOB2_2018_v29n6_635_f0007.png 이미지

Figure 7. (a) TEM image with inset showing SAED patterns of CoO-Co nanocomposite, (b) Cycling performance of CoO-Co nanocomposite, and (c) Discharge-charge profile of CoO-Co anode at current density of 500 mA g-1 (reproduced from[66]).

Table 1. Properties of Cathode Materials Used in Commercial Lithium Ion Batteries

GOOOB2_2018_v29n6_635_t0001.png 이미지

Table 2. Properties of Anode Materials Used in Commercial Lithium Ion Batteries

GOOOB2_2018_v29n6_635_t0002.png 이미지

References

  1. M. Broussely, P. Biensan, and B. Simon, Lithium insertion into host materials: the key to success for Li ion batteries, Electrochim. Acta, 45, 3-22 (1999). https://doi.org/10.1016/S0013-4686(99)00189-9
  2. N. Nitta, F. Wu, and J. T. Lee, Li-ion battery materials: present and future, Mater. today, 18, 252-264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040
  3. M. S. Whittingham and F. R. Gamble Jr, The lithium intercalates of the transition metal dichalcogenides, Mater. Res. Bull., 10, 363-371 (1975). https://doi.org/10.1016/0025-5408(75)90006-9
  4. M. S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 192, 1126-1127 (1976). https://doi.org/10.1126/science.192.4244.1126
  5. B. M. L. Rao, D. J. Eustace, and J. A. Shropshire, The Li/$TiS_2$ cell with LiSCN electrolyte, J. Appl. Electrochem., 10, 757-763 (1980). https://doi.org/10.1007/BF00611279
  6. T. Ohzuku and A. Ueda, Solid-state redox reactions of $LiCoO_2$ ($R_{3}^{-}m$) for 4 volt secondary lithium cells, J. Electrochem. Soc., 141, 2972-2977 (1994). https://doi.org/10.1149/1.2059267
  7. J. N. Reimers and J. R. Dahn, Electrochemical and in situ x-ray diffraction studies of lithium intercalation in $Li_xCoO_2$, J. Electrochem. Soc., 139, 2091-2097 (1992). https://doi.org/10.1149/1.2221184
  8. A. VanderVen, M. K. Aydinol, and G. Ceder, First-principles evidence for stage ordering in $Li_xCoO_2$, J. Electrochem. Soc., 145, 2149-2155 (1998). https://doi.org/10.1149/1.1838610
  9. X. Dai, A. Zhou, J. Xu, B. Yang, L. Wang, and J. Li, Superior electrochemical performance of $LiCoO_2$ electrodes enabled by conductive $Al_2O_3$-doped ZnO coating via magnetron sputtering, J. Power Sources, 298, 114-122 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.031
  10. S. Myung, N. Kumagai, S. Komaba, and H. Chung, Effects of Al doping on the microstructure of $LiCoO_2$ cathode materials, Solid State Ionics, 139, 47-56 (2001). https://doi.org/10.1016/S0167-2738(00)00828-6
  11. S. Madhavi and Rao GS, Effect of Cr dopant on the cathodic behavior of $LiCoO_2$, Electrochimic. Acta, 48, 219-226 (2002). https://doi.org/10.1016/S0013-4686(02)00594-7
  12. S. Huang, Z. Wen, X. Yang, Z. Gu, and X. Xu, Improvement of the high-rate discharge properties of $LiCoO_2$ with the Ag additives, J. Power Sources, 148, 72-77 (2005). https://doi.org/10.1016/j.jpowsour.2005.02.002
  13. J. R. Dahn, U. V. Sacken, and C. A. Michal, Structure and electrochemistry of $Li_{1{\pm}y}NiO_2$ and a new $Li_2NiO_2$ phase with the Ni $(OH)_2$ structure, Solid State Ionics, 44, 87-97 (1990). https://doi.org/10.1016/0167-2738(90)90049-W
  14. M. Broussely, F. Perton, P. Biensan, J. M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, and J. P. Peres, $Li_xNiO_2$, a promising cathode for rechargeable lithium batteries, J. Power Sources, 54, 109-114 (1995). https://doi.org/10.1016/0378-7753(94)02049-9
  15. S. P. Lin, K. Z. Fung, Y. M. Hon, and M. H. Hon, Effect of Al Addition on Formation of Layer-Structured $LiNiO_2$, J. Solid State Chem., 167, 97-106 (2002). https://doi.org/10.1006/jssc.2002.9624
  16. Y. Nishida, K. Nakane, and T. Satoh, Synthesis and properties of gallium-doped $LiNiO_2$ as the cathode material for lithium secondary batteries, J. Power Sources, 68, 561-564 (1997). https://doi.org/10.1016/S0378-7753(97)02535-4
  17. A. R. Armstrong and P. G. Bruce, Synthesis of layered $LiMnO_2$ as an electrode for rechargeable lithium batteries, Nature, 381, 499-500 (1996). https://doi.org/10.1038/381499a0
  18. A. R. Armstrong, A. D. Robertson, and P. G. Bruce, Structural transformation on cycling layered $Li(Mn_{1-y}Co_y)O_2$ cathode materials, Electrochimi. Acta, 45, 285-294 (1999). https://doi.org/10.1016/S0013-4686(99)00211-X
  19. S. R. Gowda, K. G. Gallagher, J. R. Croy, M. Bettge, M. M. Thackeray, and M. Balasubramanian, Oxidation state of cross-over manganese species on the graphite electrode of lithium-ion cells, Phys. Chem. Chem. Phys., 16, 6898-6902 (2014). https://doi.org/10.1039/c4cp00764f
  20. X. Han, M. Ouyang, L. Lu, J. Li, Y. Zheng, and Z. Li, A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification, J. Power Sources, 251, 38-54 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.029
  21. F. Schipper, E. M. Erickson, C. Erk, J. Y. Shin, F. F. Chesneau, and D. Aurbach, Review-recent advances and remaining challenges for lithium ion battery cathodes, J. Electrochem. Soc., 164 A6220-A6228 (2017). https://doi.org/10.1149/2.0351701jes
  22. D. Y. Wan, Z. Y. Fan, Y. X. Dong, E.baasanjav, H. B. Jun, B. Jin, E. M. Jin, and S. M. Jeong, Effect of Metal (Mn, Ti) Doping on NCA Cathode Materials for Lithium Ion Batteries, J. Nanomater., 2018, 8082502 (2018).
  23. M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mat. Res. Bull., 18, 461-472 (1983). https://doi.org/10.1016/0025-5408(83)90138-1
  24. G. Amatucci and J. M. Tarascon, Optimization of Insertion Compounds Such as $LiMn_2O_4$ for Li-Ion Batteries, J. Electrochem. Soc., 149, K31-K46 (2002). https://doi.org/10.1149/1.1516778
  25. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. Goodenough, Effect of Structure on the $Fe^{3+}/Fe^{2+}$ Redox Couple in Iron Phosphates, J. Electrochem. Soc., 144, 1609-1613 (1997). https://doi.org/10.1149/1.1837649
  26. P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, A. Mauger, and F. Gendron, C. M. Julien, Nonstoichiometric $LiFePO_4$: Defects and Related Properties, Chem. Mater., 21, 1636-1644 (2009). https://doi.org/10.1021/cm803408y
  27. J. Chen, M. J. Vacchio, S. Wang, N. Chernova, P. Y. Zavalij, and M. S. Whittingham, The hydrothermal synthesis and characterization of olivine and related compounds for electrochemical applications, Solid State Ionics, 178, 1676-1693 (2008). https://doi.org/10.1016/j.ssi.2007.10.015
  28. T. Shiratsuchi, S. Okada, T. Doi, and J. I. Yamaki, Cathodic performance of $LiMn_{1-x}M_xPO_4$ (M = Ti, Mg and Zr) annealed in an inert atmosphere, Electrochim. Acta, 54, 3145-3151 (2009). https://doi.org/10.1016/j.electacta.2008.11.069
  29. V. H. Nguyen, D. H. Lee, S. Y. Baek, H. B. Gu, and Y. H. Kim, Silicon and its effect on the electrochemical properties of $Li_3V_2(PO_4)_3$ cathode material, Ceram. Int., 44, 12504-12510 (2018). https://doi.org/10.1016/j.ceramint.2018.04.043
  30. M. Chen, L. L. Shao, H. B. Yang, T. Z. Ren, G. Du, and Z. Y. Yuan, Vanadium-doping of $LiFePO_4$/carbon composite cathode materials synthesized with organophosphorus source, Electrochim. Acta, 167, 278-286 (2015). https://doi.org/10.1016/j.electacta.2015.03.185
  31. J. C. Zheng, B. Zhang, and Z. H. Yang, Novel synthesis of $LiVPO_4F$ cathode material by chemical lithiation and postannealing, J. Power Sources, 202, 380-383 (2012). https://doi.org/10.1016/j.jpowsour.2011.10.144
  32. R. Domink, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik, $Li_2MnSiO_4$ as a potential Li-battery cathode material, J. Power Sources, 174, 457-461 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.188
  33. Z. L. Gong, Y. X. Li, and Y. Yang, Synthesis and electrochemical performance of $Li_2CoSiO_4$ as cathode material for lithium ion batteries, J. Power Sources, 174, 524-527 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.250
  34. A. Sobkowiak, M. R. Roberts, R. Younesi, T. Ericsson, L. Haggstrom, C. W. Tai, A. M. Andersson, K. Edstrom, T. Gustafsson, and F. Bjorefors, Understanding and Controlling the Surface Chemistry of $LiFeSO_4F$ for an Enhanced Cathode Functionality, Chem. Mater., 25, 3020-3029 (2013). https://doi.org/10.1021/cm401063s
  35. J. Li, L. Xing, Z. Wang, W. Tu, X. Yang, X. Yang, Y. Lin, Y. Liao, M. Xu, and W. Li, Insight into the capacity fading of layered lithium-rich oxides and its suppression via a film-forming electrolyte additive, RSC Adv., 8, 25794-25801 (2018). https://doi.org/10.1039/C8RA03852J
  36. Q. Wang, Z. Wen, J. Jin, J. Guo, X. Huang, J. Yang, and C. Chen, A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries, Chem. Commun., 52, 1637-1640 (2016). https://doi.org/10.1039/C5CC08279J
  37. X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan, Z. Yu, J. Qiu, and Y. Yang, Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery, J. Mater. Chem. A, 2, 11660-11665 (2014). https://doi.org/10.1039/C4TA01709A
  38. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 10, 725-763 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
  39. K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. van der Ven, V. Srinivasan, R. Kostecki, and G. Ceder, Lithium diffusion in graphitic carbon, J. Phys. Chem. Lett., 1, 1176-1180 (2010). https://doi.org/10.1021/jz100188d
  40. J. Liu and D. Xue, Hollow Nanostructured Anode Materials for Li-Ion Batteries, Nanoscale Res. Lett., 5, 1525-1534 (2010). https://doi.org/10.1007/s11671-010-9728-5
  41. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. Dileo, and R. P. Yaffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2, 638-654 (2009). https://doi.org/10.1039/b904116h
  42. C. C. Li and Y. W. Wang, Importance of binder compositions to the dispersion and electrochemical properties of water-based $LiCoO_2$ cathodes, J. Power Sources, 227, 204-210 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.025
  43. S. Boyanov, K. Annou, C. Villevieille, M. Pelosi, D. Zitoun, and L. Monconduit, Nanostructured transition metal phosphide as negative electrode for lithium-ion batteries, Ionics, 14, 183-190 (2008). https://doi.org/10.1007/s11581-007-0170-3
  44. W. Wang, Z. Favors, C. Li, C. Liu, R. Ye, C. Fu, K. Bozhilov, J. Guo, M. Ozkan, and C. S. Ozkan, Silicon and carbon nanocomposite spheres with enhanced electrochemical performance for full cell lithium ion batteries, Sci Rep., 7, 44838 (2017). https://doi.org/10.1038/srep44838
  45. C. de las Casas and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, 208, 74-85 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.013
  46. Y. Liu, V.I. Artyukhov, M. Liu, A. R. Harutyunyan, and B.I. Yakobson, Feasibility of lithium storage on graphene and its derivatives, J. Phys. Chem. Lett., 4, 1737-1742 (2013). https://doi.org/10.1021/jz400491b
  47. J. Yang, M. Winter, and J. O. Besenhard, Small particle size multiphase Li-alloy anodes for lithium-ion batteries, Solid State Ionics 90, 281-287 (1996). https://doi.org/10.1016/S0167-2738(96)00389-X
  48. R. A. Huggins and B. A. Boukamp, US Patent 4,436,796 (1984).
  49. C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev., 39, 3115-3141 (2010). https://doi.org/10.1039/b919877f
  50. E. N. Attia, F. M. Hassan, M. Li, R. Batmaz, A. Elkamel, and Z. Chen, Tailoring the chemistry of blend copolymers boosting the electrochemical performance of Si-based anodes for lithium ion batteries, J. Mater. Chem. A, 5, 24159-24167 (2017). https://doi.org/10.1039/C7TA08369F
  51. X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application, J. Mater. Chem. A, 1, 165-182 (2013). https://doi.org/10.1039/C2TA00437B
  52. J. D. Ocon, J. K. Lee, and J. Lee, High energy density germanium anodes for next generation lithium ion batteries, Appl. Chem. Eng., 25, 1-13 (2014). https://doi.org/10.14478/ace.2014.1008
  53. J. He, Y. Wei, T. Zhai, and H. Li, Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries, Mater. Chem. Front., 2, 437-455 (2018). https://doi.org/10.1039/C7QM00480J
  54. C. J. Wen, B. A. Boukamp, R. A. Huggisn, and W. Weppner, Thermodynamic and Mass Transport Properties of "LiAl", J. Electrochem. Soc., 126, 2258-2266 (1979). https://doi.org/10.1149/1.2128939
  55. R. A. Huggins, Advanced Batteries. Materials Science Aspects, Springer US, MA, USA (2009).
  56. M. G. Jeong, M. Islam, H. L. Du, Y. S. Lee, H.H. Sun, W. Choi, J. K. Lee, K. Y. Chung, and H. G. Jung, Nitrogen-doped carbon coated porous silicon as high performance anode material for lithium-ion batteries, Electrochim. Acta, 209, 299-307 (2016). https://doi.org/10.1016/j.electacta.2016.05.080
  57. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka, Tin-based amorphous oxide: A High-capacity lithium-ion-storage material, Science, 276, 1395-1397 (1997). https://doi.org/10.1126/science.276.5317.1395
  58. X. Li and C. Wang, Engineering nanostructured anodes via electrostatic spray deposition for high performance lithium ion battery application, J. Mater. Chem. A, 1, 165-182 (2013). https://doi.org/10.1039/C2TA00437B
  59. M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, and H. K. Liu, Preparation and ectrochemical properties of $SnO_2$ nanowires for application in lithium-ion batteries, Angew. Chem., 119, 764-767 (2007). https://doi.org/10.1002/ange.200603309
  60. L. Yu, D. Cai, H. Wang, and M. M. Titirici, Hydrothermal synthesis of $SnO_2$ and $SnO_2@C$ nanorods and their application as anode materials in lithium-ion batteries, RSC Adv., 3, 17821-17826 (2013).
  61. P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, $TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2, 45-59 (2010). https://doi.org/10.1039/B9NR00131J
  62. Y. Zhang, Q. Fu, Q. Xu, X. Yan, R. Zhang, Z. Duo, Y. Wei, D. Zhang, and G. Chen, Improved electrochemical performance of nitrogen doped $TiO_2$-B nanowires as anode materials for Li-ion batteries, Nanoscale, 7, 12215-12224 (2015). https://doi.org/10.1039/C5NR02457A
  63. J. Wang, X. M. Liu, H. Yang, and X. D. Shen, Characterization and electrochemical properties of carbon-coated $Li_4Ti_5O_{12}$ prepared by a citric acid sol-gel method, J. Alloys Compd., 509, 712-718 (2011). https://doi.org/10.1016/j.jallcom.2010.07.215
  64. M. Z. Kong, W. L. Wang, J. Y. Park, and H. B. Gu, Synthesis and electrochemical properties of a carbon-coated spinel $Li_4Ti_5O_{12}$ anode material using soybean oil for lithium-ion batteries, Mater. Lett., 146, 12-15 (2015). https://doi.org/10.1016/j.matlet.2015.01.155
  65. Y. Zhu, Q. Wang, X. Zhao, and B. Yuan, Cross-linked porous ${\alpha}$- $Fe_2O_3$ nanorods as high performance anode materials for lithium ion batteries, RSC Adv., 6, 97385-97390 (2016). https://doi.org/10.1039/C6RA22034G
  66. Y. Qin, Q. Li, J. Xu, X. Wang, G. Zhao, C. Liu, X. Yan. Y. Long, S. Yan, and S. Li, CoO-Co nanocomposite anode with enhanced electrochemical performance for lithium-ion batteries, Electrochim. Acta, 224, 90-95 (2017). https://doi.org/10.1016/j.electacta.2016.12.040
  67. T. Perez, R. L. Lopez, J. L. Nava, I. Lazaro, G. Velasco. R. Cruz, and I. Rodriguez, Electrochemical oxidation of cyanide on 3D Ti-$RuO_2$ anode using a filter-press electrolyzer, Chemosphere, 177, 1-6 (2017). https://doi.org/10.1016/j.chemosphere.2017.02.136

Cited by

  1. 에너지저장장치용 폐리튬이온배터리 성능 진단 및 복원 기술동향 vol.30, pp.3, 2019, https://doi.org/10.14478/ace.2019.1034
  2. Hierarchical Microtubes Constructed by MoS2 Nanosheets with Enhanced Sodium Storage Performance vol.14, pp.11, 2020, https://doi.org/10.1021/acsnano.0c06250
  3. Effect of soybean oil as a carbon source on the electrochemical property of LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion battery vol.30, pp.6, 2018, https://doi.org/10.1007/s42823-020-00133-1
  4. Towards prediction of ordered phases in rechargeable battery chemistry via group-subgroup transformation vol.7, pp.1, 2021, https://doi.org/10.1038/s41524-021-00653-y