DOI QR코드

DOI QR Code

Morphometric Characterisation of Root-Knot Nematode Populations from Three Regions in Ghana

  • Nyaku, Seloame Tatu (Department of Crop Science, College of Basic and Applied Sciences, University of Ghana) ;
  • Lutuf, Hanif (Department of Crop Science, College of Basic and Applied Sciences, University of Ghana) ;
  • Cornelius, Eric (Department of Crop Science, College of Basic and Applied Sciences, University of Ghana)
  • Received : 2018.05.11
  • Accepted : 2018.07.29
  • Published : 2018.12.01

Abstract

Tomato (Solanum lycopersicum) production in Ghana is limited by the root-knot nematode (Meloidogyne incognita, and yield losses over 70% have been experienced in farmer fields. Major management strategies of the root-knot nematode (RKN), such as rotation and nematicide application, and crop rotation are either little efficient and harmful to environments, with high control cost, respectively. Therefore, this study aims to examine morphometric variations of RKN populations in Ghana, using principal component analysis (PCA), of which the information can be utilized for the development of tomato cultivars resistant to RKN. Ninety (90) second-stage juveniles (J2) and 16 adult males of M. incognita were morphometrically characterized. Six and five morphometric variables were measured for adult males and second-stage juveniles (J2) respectively. Morphological measurements showed differences among the adult males and second-stage juveniles (J2). A plot of PC1 and PC2 for M. incognita male populations showed clustering into three main groups. Populations from Asuosu and Afrancho (Group I) were more closely related compared to populations from Tuobodom and Vea (Group II). There was however a single nematode from Afrancho (AF4) that fell into Group III. Biplots for male populations indicate, body length, DEGO, greatest body width, and gubernaculum length serving as variables distinguishing Group 1 and Group 2 populations. These same groupings from the PCA were reflected in the dendogram generated using Agglomerative Hierarchical Clustering (AHC). This study provides the first report on morphometric characterisation of M. incognita male and juvenile populations in Ghana showing significant morphological variation.

Keywords

E1PPBG_2018_v34n6_544_f0001.png 이미지

Fig. 1. Biplot for nine second-stage juvenile (J2) Meloidogyne incognita populations for PCA 1 and 2. Afrancho (AF), Akumadan (AK), Asuosu (AS), Toubodom (TB), Techimantia (TCH), Tanoso (TA), Tono (TO), Pwalugu (P) and Vea (V). 0-10 = Number of secondstage juvenile (J2) Meloidogyne incognita morphometrically characterised from each community. Color codings / groupings: Brown-Group 1 (Gp1), Violet-Group 2 (Gp2), and Green-Group 3(Gp3). Body length (BL), greatest body width (BW), stylet length (SL), tail length (TL), Hyaline tail length (HTL), ‘a’ = (total body length / greatest body width) and ‘c’ = (total body length / tail length).

E1PPBG_2018_v34n6_544_f0002.png 이미지

Fig. 2. Agglomerative Hierarchical Clustering (AHC) for nine second-stage juvenile (J2) Meloidogyne incognita populations. Afrancho (AF), Akumadan (AK), Asuosu (AS), Toubodom (TB), Techimantia (TCH), Tanoso (TA), Tono (TO), Pwalugu (P) and Vea (V). 0-10 = Number of second-stage juvenile (J2) Meloidogyne incognita morphometrically characterised from each community. Color codings / groupings: Brown-Group 1 (Gp1), Violet-Group 2 (Gp2), and Green-Group 3 (Gp3).

E1PPBG_2018_v34n6_544_f0003.png 이미지

Fig. 3. Biplot for four male Meloidogyne incognita populations for PCA 1 and 2. Asuosu (AS), Afrancho (AF), Toubodom (TB), and Vea (V). 0-4 = Number of male Meloidogyne incognita morphometrically characterised from each community. Color codings / groupings: Green-Group 1 (Gp1), Brown-Group 2 (Gp2), and Violet-Group 3(Gp3). Body length (BL), greatest body width (BW), Dorsal esophageal gland orifice (DEGO), gubernaculum length (GL), stylet length (SL), tail length (TL), spicule length (SP), ‘a’ = (total body length /greatest body width) and ‘c’ = (total body length / tail length).

E1PPBG_2018_v34n6_544_f0004.png 이미지

Fig. 4. Agglomerative Hierarchical Clustering (AHC) for four male Meloidogyne incognita populations. Asuosu (AS), Afrancho (AF), Toubodom (TB), and Vea (V). 0-4 = Number of male Meloidogyne incognita morphometrically characterised from each community. Color codings / groupings: Green-Group 1 (Gp1), Brown-Group 2 (Gp2), and Violet-Group 3 (Gp3).

Table 1. Geographical Position Satellite (GPS) coordinates of nematode sampling sites from 9 communities in three agroecological zones (Ghana)

E1PPBG_2018_v34n6_544_t0001.png 이미지

Table 2. Eigenvectors and Eigenvalues for male and secondstage juvenile (J2) M. incognita populations

E1PPBG_2018_v34n6_544_t0002.png 이미지

Table 3. Pearson Correlation among variables for male and second-stage juvenile (J2) M. incognita populations

E1PPBG_2018_v34n6_544_t0003.png 이미지

Table 4. Correlations between variables and principal components (PC) for male and second-stage juvenile (J2) populations

E1PPBG_2018_v34n6_544_t0004.png 이미지

Table 5. Coefficient of variation for nine M. incognita second-stage juvenile (J2) populations from Ghana

E1PPBG_2018_v34n6_544_t0005.png 이미지

Table 6. Coefficient of variation for four M. incognita male populations from Ghana

E1PPBG_2018_v34n6_544_t0006.png 이미지

Table 8. Mean and standard deviation values and ranges for four M. incognita male populations from Ghana

E1PPBG_2018_v34n6_544_t0007.png 이미지

Table 7. Mean and standard deviation values, and ranges for nine M. incognita (J2) populations from Ghana

E1PPBG_2018_v34n6_544_t0008.png 이미지

References

  1. Agrios, G. N. 2005. Plant diseases caused by nematodes. In: Plant Pathology. ed. by G. N. Agrios, pp. 826-874. Elsevier Academic Press. San Diego, California, USA.
  2. Aryeetey, E. 2006. Ghana - Second largest importer of tin tomato. URL https://www.ghanaweb.com/GhanaHomePage/business/Ghana-2nd-Largest-Importer-of-tin-tomato-101256 [20 March 2006].
  3. Eisenback, J. D. 1985. Detailed morphology and anatomy of second-stage juveniles, males and females of the genus Meloidogyne (root-knot nematodes). In: An Advance Treatise on Meloidogyne, eds. by J. N Sasser and C. C. Carter, pp. 47-77. North Carolina State University Graphics, Raleigh, North Carolina.
  4. Everitt, B. S., Landau, S. and Leese, M. 2001. Cluster Analysis. 4th ed. Taylor & Francis, London, UK. 237 pp.
  5. FAOSTAT. 2013. Production year book. URL http://faostat.fao.org/site/339/default.aspx [7 June 2016].
  6. Gould, S. J. and Johnston, R. F. 1972. Geographic variation. Annu. Rev. Ecol. Syst. 3:457-498. https://doi.org/10.1146/annurev.es.03.110172.002325
  7. Hemeng, O. B. 1981. Efficacy of selected nematicides for the control of root-knot nematodes, Meloidogyne species in Ghana. Ghana J. Agric. Sci. 13:37-40.
  8. Hewlett, T. E. and Tarjan, A. C. 1983. Monographs: Synopsis of the genus Meloidogyne Goeldi, 1887. Nematropica 13:79-102.
  9. Jacquet, M., Bongiovanni, M., Martinez, M., Verschave, P., Wajnberg, E. and Castagnone-Sereno, P. 2005. Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi - gene. Plant Pathol. 54:93-99. https://doi.org/10.1111/j.1365-3059.2005.01143.x
  10. Jepson, S. B. 1983. Identification of Meloidogyne: a general assessment and a comparison of males morphology using light microscopy, with a key to 24 species. Revue de Nematologie 6:291-306.
  11. Jepson, S. B. 1987. Identification of root-knot nematodes (Meloidogyne species). CAB International, Wallingford, UK. 265 pp.
  12. Karssen, G. 2002. The plant-parasitic nematode genus Meloidogyne Goldi, 1892 (Tylenchida) in Europe. Brill Academic Publishers, Leiden, Netherlands. 157 pp.
  13. Kaur, H. and Attri, R. 2013. Morphological and morphometrical characterization of Meloidogyne incognita from different host plants in four districts of Punjab, India. J. Nematol. 45:122-127.
  14. Naz, I., Palomares-Rius, J. E., Blok, V., Saifullah, S. A. and Ahmed, M. 2012. Prevalence, incidence and molecular identification of root-knot nematodes of tomato in Pakistan. Africa J. Biotechnol. 11:16546-16556.
  15. Nyaku, S. T., Kantety, R. V., Cebert, E., Lawrence, K. S., Honger, J. O. and Sharma, G. C. 2016. Principal component analysis and molecular characterization of reniform nematode populations in Alabama. Plant Pathol. J. 32:123-135. https://doi.org/10.5423/PPJ.OA.09.2015.0194
  16. Osei, K., Osei, M. K., Mochiah, M. B., Lamptey, J. N. L. Bolfrey-Arku, G. and Berchie, J. N. 2012 Plant parasitic nematodes associated with tomato in Ghana. Nematol. Mediterr. 40:33-37.
  17. Reyment, R. A., Blackith, R. E. and Campbell, N. A. 1981. Multivariate morphometrics. 1st ed. Academic Press, New York, USA. 233 pp.
  18. Singh S. K. 2009. Morphological and molecular characterization of root-knot nematode (Meloidogyne spp.) diversity in Fiji. Master's thesis. University of the South Pacific, Suva, Fiji Islands.
  19. Ward, J. H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58:236-244. https://doi.org/10.1080/01621459.1963.10500845
  20. Wolff, H. 1999. Economics of tomato production with special reference to aspects of plant protection: A case study of two tomato production systems in Brong Ahafo region, Ghana. Ghanaian-German Project for Integrated Crop Protection, GTZ Eschborn. 131 pp.
  21. Zeng, Y., Ye, W. and Kerns, J. 2014. First report and morphological and molecular characterization of Meloidogyne incognita from Radermachera sinica in China. Nematropica 44:118-129.