DOI QR코드

DOI QR Code

Color Analysis and Binarization of River Image for River Surveillance

하천 감시를 위한 하천 영상의 색상 분석 및 이진화 방법

  • 박상현 (순천대학교 멀티미디어공학과)
  • Received : 2017.09.08
  • Accepted : 2018.02.15
  • Published : 2018.02.28

Abstract

Due to global warming, various natural disasters such as floods and localized heavy rains are increasing. If a natural disaster can be detected and analyzed in advance and effectively, it can prevent enormous damage due to natural disasters. Recent development in visual sensor technologies has encouraged various studies on monitoring environments including rivers. In this paper, we propose a method to detect river regions from river images which can be exploited for river surveillance systems using video sensor networks. In the proposed method, we first analyze the color properties of the river region and the background region of a image and then propose a way to select the proper color channel and binarize the image to detect the river region. It is shown by experimental results that the proposed method is simple but detects river regions accurately.

지구 온난화로 인해 홍수나 집중 호우와 같은 자연 재해들이 증가하고 있다. 이러한 자연 재해들이 미리 그리고 효과적으로 인지될 수 있다면 재해로 인한 많은 피해들을 미리 막을 수 있을 것이다. 최근 비쥬얼 센서 기술의 발전을 바탕으로 재해를 예방하기 위해 하천을 포함한 다양한 자연환경을 감시하는데 비쥬얼 센서 기술을 적용하는 연구들이 많이 진행되고 있다. 이 논문에서는 비쥬얼 센서 네트워크 기술을 이용한 하천 감시 시스템에 적용 가능한 강물 영상에서 강물 영역을 분할하는 방법을 제안한다. 제안하는 방법에서는 먼저 강물 영역과 배경 영역의 색상에 대한 분석을 하고 그 결과를 바탕으로 영상 분할에 가장 효과적인 색상 채널을 선택하고 이진화를 통해 강물영역을 검출한다. 실험 결과는 제안하는 방법이 간단하면서도 정확하게 강물 영상에서 강물 영역을 분리하는 것을 보여준다.

Keywords

References

  1. Y. Kim, S. Yang, K. Yu, and D. Kim, "Flood Runoff Calculation using Disaster Monitoring CCTV System," J. of Environmental Science International, vol. 23, Apr. 2014, pp. 571-584. https://doi.org/10.5322/JESI.2014.4.571
  2. M. Devlin, C. Petus, E. Silva, D. Tracey, N. Wolff, J. Waterhouse, and J. Brodie, "Water quality and river plume monitoring in the Great Barrier Reef: an overview of methods based on ocean colour satellite data," Remote Sensing, vol. 7, Oct. 2015, pp. 12909-12941. https://doi.org/10.3390/rs71012909
  3. K. Nam, "A Study on Yeong-san River Ecological Environment Monitoring based on IoT," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 2, 2015, pp. 203-210. https://doi.org/10.13067/JKIECS.2015.10.2.203
  4. J. Paek, J. Hicks, S. Coe, and R. Govindan, "Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network," Sensors, vol. 14, no. 9, 2014, pp. 15981-16002. https://doi.org/10.3390/s140915981
  5. Y. Lee, "The Application of USN for River Measurement - The Yang-Jae Brooket Case," J. of the Korean Society of Civil Engineers, vol. 57, May 2009, pp.10-24.
  6. J. Park, S. Lee, and W. Oh, "Congestion Control Mechanism for Efficient Network Environment in WMSN," J. of the Korea Institute of Electronic Communication Sciences, vol. 10, no. 2, 2015, pp. 289-296. https://doi.org/10.13067/JKIECS.2015.10.2.289
  7. Y. Lee and W. Kim, "Smoke color analysis of the standard color models for fire video surveillance," J. of the Korean Academia-Industrial Cooperation Society, vol. 14, no. 9, pp. 4472-4477, 2013/09 2013. https://doi.org/10.5762/KAIS.2013.14.9.4472
  8. G. Lee, M. Uzair, J. Yoon, J. Kim, and W. Kim, "Comparisons of Color Spaces for Shadow Elimination," J. of Korea Multimedia Society, vol. 11, no. 5, 2008, pp. 610-622.
  9. S. Lee, J. Xin, and S. Westland. "Evaluating of image similarity by histogram intersection," Color Research&Application, Vol. 30, Aug. 2005, 265-274. https://doi.org/10.1002/col.20122
  10. Y. Lu, J. Hu, and D. Huang, "Study on a image matching algorithm based on sphere similarity of color histogram intersection," In Proc. the 6th World Congress on Intelligent Control and Automation, Jun. 2006, pp. 9946-9948.