DOI QR코드

DOI QR Code

Selection of rs2rs2titi Soybean Genotype with Yellow Seed Coat

rs2rs2titi 유전자형을 가진 노란 콩 계통 선발

  • Choi, Sang Woo (Department of Agronomy, Gyeongsang National University) ;
  • Park, Jun Hyun (Department of Agronomy, Gyeongsang National University) ;
  • Chung, Jong Il (Department of Agronomy, Gyeongsang National University)
  • Received : 2018.09.16
  • Accepted : 2018.11.03
  • Published : 2018.11.30

Abstract

Soybean [Glycine max (L.) Merr.] seed is an important dietary source of protein, oil, carbohydrates, isoflavones, and other nutrients for humans and animals. But, antinutritional factors in the raw mature soybean are exist. Kunitz trypsin inhibitor (KTI) protein and stachyose are main antinutritional factors in soybean seed. The genetic removal of the antinutritional factors will improve the nutritional value of soybean seed. The objective of this research was to breed a new yellow soybean strains (rs2rs2titi genotype) with the traits of lacking of KTI protein and low content of stachyose. Breeding population was developed from the cross of "Jinyangkong" and 15G1 parents. Presence or absence of KTI protein was detected based on Western Blot technique. Content of stachyose in mature seed was detected by HPLC. Total four new strains (603-1, 603-2, 625, and 694) with KTI protein free and low content of stachyose were selected. Four strains (603-1, 603-2, 625, and 694) have yellow seed coat and hilum. Plant height of 603-1 strain was 65 cm and 100-seed weight was 29.2 g. Plant height of 603-2 strain was 66 cm and 100-seed weight was 26.2 g. Plant height of 625 strain was 64 cm and 100-seed weight was 27.1 g. Content of stachyose for four new strains was 3.0~3.50 g/kg. Four strains selected in this research will be used to improve new yellow soybean cultivar with KTI protein free, and low content of stachyose.

콩[Glycine max (L.) Merr.]은 한반도와 남만주 및 중국일대가 원산지로 예로부터 식물성 단백질과 지방을 얻기 위하여 아시아 지역에서 많이 재배되었다. 최근에는 다양한 기능성 성분들이 발견됨에 따라 단순한 양질의 단백질 공급원의 역할을 넘어 건강 기능성 식품으로 주목받고 있지만 기능성과 가공 적성 및 품질을 저해시키는 성분들도 다수 존재한다. 본 연구는 콩 및 콩 제품의 품질과 기능성을 떨어뜨리는 성분인 Kunitz Trypsin Inhibitor(KTI) 단백질이 없으면서 난소화성 올리고당인 stachyose 함량이 낮은 rs2rs2titi 유전자형을 가진 노란 콩 계통을 선발하기 위하여 진행되었다. Jinyangkong ${\times}$ 15G1의 조합으로 얻어진 육종집단으로부터 rs2rs2titi 유전자형을 가진 4개의 계통(603-1, 603-2, 625, 694)을 선발하였다. 선발된 4개의 계통 $F_5$ 성숙 종자에서 KTI 단백질은 없었으며 초장은 64~66 cm, 백립중은 26.1~29.2 g으로 대립이었으며 종피색과 제색은 모두 노란색이었다. 선발계통의 stachyose 함량은 3.09~3.50 g/kg으로 RS2RS2 유전자형을 가진 대조품종들의 stachyose 함량 13.02~16.81 g/kg보다 매우 낮았다. 본 연구를 통하여 선발된 계통들은 Kunitz Trypsin Inhibitor (KTI) 단백질이 없으면서 난소화성 올리고당인 stachyose의 함량이 낮은 고품질 기능성 노란 콩 품종육성을 위한 중간모본으로 이용될 수 있을 것으로 사료된다.

Keywords

SMGHBM_2018_v28n11_1285_f0001.png 이미지

Fig. 1. Scheme for selection of lacking of Kunitz Trypsin Inhibitor (KTI) protein and low content of stachyose (rs2rs2titi genotype).

SMGHBM_2018_v28n11_1285_f0002.png 이미지

Fig. 2. Segregation of Kunitz trypsin inhibitor (KTI) protein in the parents and F2 seeds. Arrow is the KTI protein band. P1: Jinyangkong, P2: 15G1. +, -: presence and absence of KTI protein, respectively.

SMGHBM_2018_v28n11_1285_f0003.png 이미지

Fig. 3. Identification of Kunitz Trypsin Inhibitor(KTI) protein free for four F5 seed strains selected in this experiment. P1: Jinyangkong, P2: 15G1. +, -: presence and absence KTI protein, respectively.

Table 1. Flower color, seed coat color, hilum color, and genotype for Rs2 (rs2) and Ti (ti) alleles of two parents used in this experiment

SMGHBM_2018_v28n11_1285_t0001.png 이미지

Table 2. Planting date, harvesting date, plant height, seed weight, seed coat color and hilum color for four new strains

SMGHBM_2018_v28n11_1285_t0002.png 이미지

Table 3. Content of stachyose for five cultivars and four new strains selected in this experiment

SMGHBM_2018_v28n11_1285_t0003.png 이미지

References

  1. Dierking, E. C. and Bilyeu, K. D. 2008. Association of a soybean raffinose synthase gene with low raffinose and stachyose seed phenotype. Plant Genome 1, 135-145. https://doi.org/10.3835/plantgenome2008.06.0321
  2. Friedman, M., Brandon, D. L., Bates, A. H. and Hymowitz, T. 1991. Comparison of a commercial soybean cultivar and an isoline lacking the Kunitz trypsin inhibitor: composition, nutritional value, and effects of heating. J. Agric. Food Chem. 39, 327-335. https://doi.org/10.1021/jf00002a022
  3. Hou, A., Chen, P., Alloatti, J., Li, D., Mozzoni, L., Zhang, B. and Shi, A. 2009. Genetic variability of seed sugar content in worldwide soybean germplasm collections. Crop Sci. 49, 903-912. https://doi.org/10.2135/cropsci2008.05.0256
  4. Hymowitz, T., Collins, F. I., Panezner, J. and Walker, W. M. 1972. Relationship between the content of oil, protein, and sugar in soybean seed. Agron. J. 64, 613-616. https://doi.org/10.2134/agronj1972.00021962006400050019x
  5. Hymowitz, T. 1973. Electrophoretic analysis of SBTI-A2 in the USDA soybean germplasm collection. Crop Sci. 13, 420-421. https://doi.org/10.2135/cropsci1973.0011183X001300040008x
  6. Jason, D. N., Fehr, W. R. and Schnebly, S. R. 2005. Agronomic and seed characteristics of soybean with reduced raffinose and stachyose. Crop Sci. 45, 589-592. https://doi.org/10.2135/cropsci2005.0589
  7. Kerr, P. S. and Sebastian, S. A. 2000. Soybean products with improved carbohydrate composition and soybean plants. U.S. Patent 6147193. Date issued: 14 November. 64, 613-616.
  8. Krober, O. A. and Cartter, J. L. 1962. Quantitative interrelations of protein and nonprotein constituents of soybeans. Crop Sci. 2, 171-172. https://doi.org/10.2135/cropsci1962.0011183X000200020028x
  9. Kumar, V., Rani, A., Goyal, L., Dixit, A. K., Manjaya, J. G. and Swamy, M. 2010. Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location. J. Agric. Food Chem. 58, 5081-5085. https://doi.org/10.1021/jf903141s
  10. Kunitz, M. 1947. Isolation of a crystalline protein compound of trypsin and soybean trypsin inhibitor. J. Gen. Physiol. 30, 311-320. https://doi.org/10.1085/jgp.30.4.311
  11. Levitt, D. 1999. Gas production in humans ingesting soybean flour derived from beans naturally low in oligosaccharides. Am. J. Clin. Nutr. 69, 135-139. https://doi.org/10.1093/ajcn/69.1.135
  12. Murphy, E. L., Horsley, H. and Burr, H. K. 1972. Fractionation of dry bean extracts which increase carbon dioxide egestion in human flatus. J. Agr. Food. Chem. 20, 813-817. https://doi.org/10.1021/jf60182a024
  13. Maughan, P. J., Saghai Maroof, M. A. and Buss, G. R. 2000. Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Mol. Breed. 6, 105-111. https://doi.org/10.1023/A:1009628614988
  14. Orf, J. H. and Hymowitz, T. 1979. Inheritance of the absence of the Kunitz trypsin inhibitor in seed protein of soybeans. Crop Sci. 19, 107-109. https://doi.org/10.2135/cropsci1979.0011183X001900010026x
  15. Singh, L. C, Wilson, M. and Hadley, H. H. 1969. Genetic differences in soybean trypsin inhibitor separated by disc electrophoresis. Crop Sci. 9, 489-491. https://doi.org/10.2135/cropsci1969.0011183X000900040031x
  16. Suarez, F. L., Furne, J. K., Springfield, J. R. and Levitt, M. D. 1997. Insights into human colonic physiology obtained from study of flatus composition. Am. J. Physiol. 272, 1028-1033.
  17. Wang, K. J., Kaizuma, N., Takahata, Y. and Hatakeyama, S. 1996. Detection of two new variants of soybean Kunitz trypsin inhibitor through electrophoresis. Breed. Sci. 46, 39-44.
  18. Wang, K. J., Yamashita, T., Watanabe, M. and Takahata, Y. 2004. Genetic characterization of a novel $Ti^b$-derived variant of soybean Kunitz trypsin inhibitor detected in wild soybean (Glycine soja). Genome 47, 9-14. https://doi.org/10.1139/g03-087
  19. Wang, K. J. and Li, X. H. 2005. $Ti^f$ type of soybean Kunitz trypsin inhibitor exists in wild soybean of northern China. In:Proceedings of the 8th national soybean research conference of China, p, 167-168.
  20. Zhao, S. W. and Wang, H. 1992. A new electrophoretic variant of SBTi-A2 in soybean seed protein. Soybean Genet. Newsl. 19, 22-24.