Abstract
The most natural way to increase immersion and provide free interaction in a virtual environment is to provide a gesture interface using the user's hand. However, most studies about hand gesture recognition require specialized sensors or equipment, or show low recognition rates. This paper proposes a three-dimensional DenseNet Convolutional Neural Network that enables recognition of hand gestures with no sensors or equipment other than an RGB camera for hand gesture input and introduces a virtual reality game based on it. Experimental results on 4 static hand gestures and 6 dynamic hand gestures showed that they could be used as real-time user interfaces for virtual reality games with an average recognition rate of 94.2% at 50ms. Results of this research can be used as a hand gesture interface not only for games but also for education, medicine, and shopping.
가상 환경에서 몰입감을 높이고 자유로운 상호작용을 제공하기 위한 가장 자연스러운 방법은 사용자의 손을 이용한 제스처 인터페이스를 제공하는 것이다. 그러나 손 제스처 인식에 관한 기존의 연구들은 특화된 센서나 장비를 요구하거나 낮은 인식률을 보이는 단점이 있다. 본 논문은 손 제스처 입력을 위한 RGB 카메라 이외 별도 센서나 장비 없이 손 제스처 인식이 가능한 3차원 DenseNet 합성곱 신경망 모델을 제안하고 이를 기반으로 한 가상현실 게임을 소개한다. 4개의 정적 손 제스처와 6개의 동적 손 제스처 인터페이스에 대해 실험한 결과 평균 50ms의 속도로 94.2%의 인식률을 보여 가상현실 게임의 실시간 사용자 인터페이스로 사용 가능함을 알 수 있었다. 본 연구의 결과는 게임 뿐 아니라 교육, 의료, 쇼핑 등 다양한 분야에서 손 제스처 인터페이스로 활용될 수 있다.