Abstract
In this paper, we propose an automated method for the ground-glass nodule(GGN) classification using GGN-Net based on intensity, texture, and shape-enhanced images in chest CT images. First, we propose the utilization of image that enhances the intensity, texture, and shape information so that the input image includes the presence and size information of the solid component in GGN. Second, we propose GGN-Net which integrates and trains feature maps obtained from various input images through multiple convolution modules on the internal network. To evaluate the classification accuracy of the proposed method, we used 90 pure GGNs, 38 part-solid GGNs less than 5mm with solid component, and 23 part-solid GGNs larger than 5mm with solid component. To evaluate the effect of input image, various input image set is composed and classification results were compared. The results showed that the proposed method using the composition of intensity, texture and shape-enhanced images showed the best result with 82.75% accuracy.
본 논문에서는 흉부 CT 영상에서 결절의 밝기값, 재질 및 형상 증강 영상 기반의 GGN-Net을 이용해 간유리음영 결절 자동 분류 방법을 제안한다. 첫째, 입력 영상에 결절 내부의 고형 성분의 유무 및 크기 정보가 포함될 수 있도록 밝기값, 재질 및 형상 증강 영상의 활용을 제안한다. 둘째, 다양한 입력 영상을 여러 개의 컨볼루션 모듈을 통해 획득한 특징맵을 내부 네트워크에서 통합하여 훈련하는 GGN-Net를 제안한다. 제안 방법의 분류정확성 평가를 위해 순수 간유리음영 결절 90개와 고형 성분의 크기가 5mm 미만인 혼합 간유리음영 결절 38개, 5mm 이상 고형 성분의 크기를 가지는 혼합 간유리음영 결절 23개의 데이터를 사용하였으며, 입력 영상이 간유리음영 결절 분류 결과에 미치는 영향을 비교하기 위해 다양한 입력 영상을 구성하여 결과를 비교하였다. 실험 결과, 밝기값, 재질 및 형상 정보가 함께 고려된 입력 영상을 사용한 제안 방법이 정확도가 82.75%로 가장 좋은 결과를 보였다.