References
- Bellio R and Ventura L (2005). An introduction to robust estimation with R functions. In Proceedings of 1st International Work, 1-57.
- Bohning D (1995). A review of reliable maximum likelihood algorithms for semiparametric mixture models, Journal of Statistical Planning and Inference, 47, 5-28. https://doi.org/10.1016/0378-3758(94)00119-G
- Brownlee KA (1960). Statistical Theory and Methodology in Science and Engineering, John Wiley & Sons, New York.
- Chen Y and Samworth RJ (2013). Smoothed log-concave maximum likelihood estimation with applications, Statistica Sinica, 23, 1373-1398.
- Dharmadhikari SW and Joag-Dev K (1988). Unimodality, Convexity, and Applications, Academic Press, Boston.
- Dumbgen L, Husler A, and Rufibach K (2007). Active set and EM algorithms for log-concave densities based on complete and censored data, arXiv:0707.4643.
- Dumbgen L, Samworth R, and Schuhmacher D (2011). Approximation by log-concave distributions, with applications to regression, The Annals of Statistics, 39, 702-730. https://doi.org/10.1214/10-AOS853
- Holland PW and Welsch RE (1977). Robust regression using iteratively reweighted least-squares, Communications in Statistics - Theory and Methods, 6, 813-827. https://doi.org/10.1080/03610927708827533
- Karlin S (1968). Total Positivity, Stanford University Press, Stanford.
- Lange KL, Little RJA, and Taylor JMG (1989). Robust statistical modeling using the t distribution, Journal of the American Statistical Association, 84, 881-896.
- Lange K and Sinsheimer JS (1993). Normal/independent distributions and their applications in robust regression, Journal of Computational and Graphical Statistics, 2, 175-198.
- ML and Kalbfleisch JD (1992). An algorithm for computing the nonparametric MLE of a mixing distribution, Journal of the American Statistical Association, 87, 120-126. https://doi.org/10.1080/01621459.1992.10475182
- Lindsay BG (1983). The geometry of mixture likelihoods: a general theory, The Annals of Statistics, 11, 86-94. https://doi.org/10.1214/aos/1176346059
-
Pal JK, Woodroofe M, and Meyer M (2007). Estimating a Polya frequency
$function_2$ , 54, Lecture Notes-Monograph Series, 239-249. - Rufibach K (2007). Computing maximum likelihood estimators of a log-concave density function, Journal of Statistical Computation and Simulation, 77, 561-574. https://doi.org/10.1080/10629360600569097
- Rufibach K and Dumbgen L (2010). Logcondens: estimate a log-concave probability density from iid observations, R package version, 2.
- Seo B, Noh J, Lee T, and Yoon YJ (2017). Adaptive robust regression with continuous Gaussian scale mixture errors, Journal of the Korean Statistical Society, 46, 113-125. https://doi.org/10.1016/j.jkss.2016.08.002
- Silverman BW (1982). On the estimation of a probability density function by the maximum penalized likelihood method, The Annals of Statistics, 10, 795-810. https://doi.org/10.1214/aos/1176345872
- Walther G (2002). Detecting the presence of mixing with multiscale maximum likelihood, Journal of the American Statistical Association, 97, 508-513. https://doi.org/10.1198/016214502760047032
- Walther G (2009). Inference and modeling with log-concave distributions, Statistical Science, 24, 319-327. https://doi.org/10.1214/09-STS303
- Wang Y (2007). On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69, 185-198. https://doi.org/10.1111/j.1467-9868.2007.00583.x