DOI QR코드

DOI QR Code

한반도 동해 연안에 자생하는 말잘피, 새우말의 생장 특성

Growth Dynamics of the Surfgrass, Phyllospadix iwatensis on the Eastern Coast of Korea

  • 투고 : 2018.08.14
  • 심사 : 2018.10.05
  • 발행 : 2018.11.30

초록

말잘피 새우말은 북태평양에 위치한 북동아시아 연안의 암반에 자생한다. 우리나라에서 새우말은 주로 동해 중부해역의 암반조하대에 나타나며, 본 조사에서는 이 곳에 서식하는 새우말의 생태적 특성을 알아보기 위해, 2017년 8월부터 2018년 7월까지 새우말 군락지의 수중광량, 수온의 변화와 함께 매월 새우말의 형태적 특성, 밀도, 생체량과 잎 생산성의 변화를 조사하였다. 수중광량과 수온은 봄과 여름에 증가하고 가을과 겨울에 감소하는 뚜렷한 계절 경향을 보였다. 새우말의 형태, 밀도, 생체량과 잎 생산성은 겨울과 봄에 증가하고, 여름과 가을에 감소하였다. 새우말의 개체당 잎 생산성과 단위면적당 잎 생산성은 수중광량과 유의한 양의 상관관계를 보였다. 새우말의 연간 평균 단위면적당 잎 생산량은 $6.3{\pm}1.3g\;m^{-2}d^{-1}$로, 2018년 5월 최대값($16.4{\pm}4.4g\;m^{-2}d^{-1}$)과 2월에 최소값($2.4{\pm}0.3g\;m^{-2}d^{-1}$)을 나타내었다. 새우말 생장의 최적 수온은 $12-13^{\circ}C$로 조사되었다.

The surfgrass Phyllospadix iwatensis is native in the exposed rocky shores of the Northwestern Pacific Ocean. In Korea, P. iwatensis is mainly found on the rocky subtidal zone in the central eastern coast. In this study, to examine the ecological characteristics of P. iwatensis, we investigated changes in morphological characteristics, density, biomass, and leaf productivity as well as changes in the underwater irradiance and water temperature of its habitat monthly from August 2017 to July 2018. Underwater irradiance and water temperature showed clear seasonal changes; increases in spring and summer and decreases in fall and winter. Morphological characteristics, shoot density, biomass, and leaf productivities of P. iwatensis exhibited significant seasonal variations, increasing in winter and spring and decreasing in summer and fall months. P. iwatensis leaf productivities both per shoot and per unit area showed significant positive correlations with underwater irradiance. The average leaf productivity of P. iwatensis per area was $6.3{\pm}1.3g\;m^{-2}d^{-1}$, while minimum and maximum values were $2.4{\pm}0.3g\;m^{-2}d^{-1}$ in February 2018 and $16.4{\pm}4.4g\;m^{-2}d^{-1}$ in May 2018, respectively. The optimum water temperature for the growth of P. iwatensis in this study was between $12-13^{\circ}C$.

키워드

GHOHBG_2018_v23n4_192_f0001.png 이미지

Fig. 1. Study site of Phyllospadix iwatensis growth dynamics. The site was located in Goseong-gun, Gangwon-do, on the open shores of the eastern coast of the Korean peninsula.

GHOHBG_2018_v23n4_192_f0002.png 이미지

Fig. 2. Monthly changes in underwater irradiance (A), and water temperature (B) at the study site from August 2017 to July 2018.

GHOHBG_2018_v23n4_192_f0003.png 이미지

Fig. 3. Monthly changes in number of leaves per shoot (A), leaf width (B), leaf thickness (C), sheath length (D), sheath width (E), and shoot height (F) of Phyllospadix iwatensis from August 2017 to July 2018.

GHOHBG_2018_v23n4_192_f0004.png 이미지

Fig. 4. Monthly changes in shoot density of Phyllospadix iwatensis from August 2017 to July 2018. Vegetative shoot (A), spadix (B), and total shoot (C).

GHOHBG_2018_v23n4_192_f0005.png 이미지

Fig. 5. Monthly changes in biomass of Phyllospadix iwatensis from August 2017 to July 2018. Above ground (A), rhizome+root (B), and total biomass (C).

GHOHBG_2018_v23n4_192_f0006.png 이미지

Fig. 6. Monthly changes in leaf productivity per shoot (A), and areal leaf productivity (B) of Phyllospadix iwatensis from August 2017 to July 2018.

GHOHBG_2018_v23n4_192_f0007.png 이미지

Fig. 7. Best-fit regressions of Phyllospadix iwatensis areal leaf production on underwater irradiance (A), and water temperature (B).

Table 1. Pearson‘s correlation analysis results (two-tailed) for number of leaves (NL), leaf width (LW), sheath width (SW), sheath length (SL), leaf thickness (LT), shoot height (SH), leaf productivity per shoot (SP), areal leaf productivity (AP), vegetative shoot density (VD), spadix density (SD), total shoot density (TD), above ground biomass (AB), rhizome+root biomass (RB), total biomass (TB), underwater irradiance (UI), and water temperature (WT)

GHOHBG_2018_v23n4_192_t0001.png 이미지

참고문헌

  1. Barber, B.J. and P.J. Behrens, 1985. Effects of elevated temperature on seasonal in situ leaf productivity of Thalassia testudinum Banks exKonig and Syringodium filiforme Kutzing. Aquat. Bot., 22: 61-69. https://doi.org/10.1016/0304-3770(85)90029-4
  2. Dennison, W.C., 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquat. Bot., 27: 15-26. https://doi.org/10.1016/0304-3770(87)90083-0
  3. Green, E.P. and F.T. Short, 2003. World atlas of seagrasses. University of California press, Berkeley, USA, 298 pp.
  4. Kentula, M.E. and C.D. McIntire, 1986. The autecology and production dynamics of eelgrass in Netarts Bay, Oregon. Estuaries, 9: 188-199. https://doi.org/10.2307/1352130
  5. Kim, J.B., J.-I. Park, C.-S. Jung, P.-Y. Lee and K.-S. Lee, 2009. Distributional range extension of the seagrass Halophila nipponica into coastal waters off the Korean peninsula. Aquat. Bot., 90: 267-272.
  6. Kim, J.H., S.H. Park, Y.K. Kim, SH Kim, J.-I. Park and K-S Lee, 2014. Seasonal growth dynamics of the seagrass Zostera caulescens on the eastern coast of Korea. Ocean Sci. J., 49: 391-402. https://doi.org/10.1007/s12601-014-0036-3
  7. Kim, T.H., S.R. Park, Y.K. Kim, J.-H. Kim, S.H.Kim, J.H. Kim, I.K. Chung and K.-S. Lee. 2008. Growth dynamics and carbon incorporation of the seagrass, Zostera marina L. in Jindong Bay and Gamak Bay on the Southern Coast of Korea. Algae, 23: 241-250. https://doi.org/10.4490/ALGAE.2008.23.3.241
  8. Lee, K.-S., S.R. Park, J.B. Kim, 2005a. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Mar. Biol., 147: 1091-1108. https://doi.org/10.1007/s00227-005-0011-8
  9. Lee, K-S, J-I Park, Y-K Kim, SR Park and J-H Kim. 2007a. Recolonization of Zostera marina following destruction caused by a red tide algal bloom: the role of new shoot recruitment from seed banks. Mar. Ecol. Prog. Ser., 342: 105-115. https://doi.org/10.3354/meps342105
  10. Lee, K.-S., S.R. Park and Y.K. Kim, 2007b. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: A review. J. Exp. Mar. Biol. & Ecol., 350: 144-175. https://doi.org/10.1016/j.jembe.2007.06.016
  11. Lee S-Y, JH Oh, CI Choi, Y Suh and H Mukai, 2005b. Seasonal variation in morphology, growth and reproduction of Zostera caespitosa on the southern coast of Korea. Aquat. Bot., 83: 250-262. https://doi.org/10.1016/j.aquabot.2005.03.003
  12. Park, J-I , J-H Kim and S-H Park, 2016. Growth dynamics of the deep-water Asian eelgrass, Zostera asiatica, in the eastern coastal waters of Korea. Ocean Sci. J., 51: 613-625. https://doi.org/10.1007/s12601-016-0052-6
  13. Park, J.-I. and K.-S. Lee, 2007. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bul., 54: 1238-1248. https://doi.org/10.1016/j.marpolbul.2007.03.020
  14. Park, J.-I. and K.-S. Lee, 2009. Peculiar growth dynamics of the surfgrass Phyllospadix japonicus on the southeastern coast of Korea. Mar. Biol., 156: 2221-2233. https://doi.org/10.1007/s00227-009-1250-x
  15. Park, J.-I., K.-S. Lee and M.H. Son, 2011. Growth dynamics of Zostera marina transplants in the Nakdong estuary related to environmental changes. Kor. J. Fish. Aquat. Sci., 44: 533-542.
  16. Park, J-I, J.B. Kim and K.-S. Lee, 2017. A comparison of growth patterns between non- indigenous Halophila nipponica and the native sympatric Zostera marina on the southern coast of the Korean peninsula. Mar. Ecol., 38: e12452, DOI: 10.1111/maec.12452.
  17. Ramirez-Garcia, P, J. Terrados, F. Ramos, A. Lot, D. Ocana and C.M. Duarte, 2002. Distribution and nutrient limitation of surfgrass, Phyllospadix scouleri and Phyllospadix torreyi, along the Pacific coast of Baja California (Mexico). Aquat. Bot., 74: 121-131. https://doi.org/10.1016/S0304-3770(02)00050-5
  18. Short, F.T. and C.M. Duarte, 2001. Methods for the measurement of seagrass growth and production. In: Global Seagrass Research Methods, edited by Short F.T., R.G. Coles, C.A. Short, ELSEVIA, Amsterdam, The netherlands pp. 155-182.
  19. Smith, W.K., T.C. Vogelmann, E.H. Delucia, D.T. Bell and K.A. Shepherd, 1997. Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? BioScience 47: 785-793. https://doi.org/10.2307/1313100
  20. Turner, T., 1983. Complexity of early and middle successional stages in a rocky intertidal surfgrass community. Oecologia, 60: 56-65. https://doi.org/10.1007/BF00379320
  21. van Tussenbroek, B.I., 1995. Thalassia testudinum leaf dynamics in a Mexican Caribbean coral reef lagoon. Mar. Biol., 122: 33-40. https://doi.org/10.1007/BF00349275
  22. Williams, S.L., 1995. Surfgrass (Phyllospadix torreyi) reproduction: reproductive phenology, resource allocation, and male parity. Ecology, 76: 1953-1970. https://doi.org/10.2307/1940726
  23. Yabe, T., I. Ikusima, T. Tsuchiya, 1996. Production and population ecology of Phyllospadix iwatensis Makino. II. Comparative studies on leaf characteristics, foliage structure and biomass change in an intertidal and subtidal zone. Ecol. Res., 11: 291-297. https://doi.org/10.1007/BF02347786
  24. Zimmerman, J.C., R.L. Reguzzoni, R.S. Alberte, 1995. Eelgrass (Zostera marina L.) transplants in San Francisco bay: Role of light availability on metabolism, growth and survival. Aquat. Bot., 51: 67-86. https://doi.org/10.1016/0304-3770(95)00472-C