DOI QR코드

DOI QR Code

황해 동부해역 표층퇴적물의 중금속 농도 분포

Distribution of Heavy Metal Concentrations in Surface Sediments of the eastern Yellow Sea

  • 선철인 (해양환경공단 해양수질팀) ;
  • 박건우 (해양환경공단 해양수질팀) ;
  • 박현실 (해양환경공단 해양생태팀) ;
  • 박준건 (해양환경공단 해양수질팀) ;
  • 김성길 (해양환경공단 해양수질팀) ;
  • 최만식 (충남대학교 해양환경과학과)
  • SUN, CHUL-IN (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • PARK, GEON-WOO (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • PARK, HYEON-SIL (Marine Ecosystem Management Team, Korea Marine Environment Management Corporation) ;
  • PARK, JUN KUN (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • KIM, SEONG GIL (Marine Environment Monitoring Team, Korea Marine Environment Management Corporation) ;
  • CHOI, MAN SIK (Department of Marine Environmental Science, Chungnam National University)
  • 투고 : 2018.05.28
  • 심사 : 2018.10.24
  • 발행 : 2018.11.30

초록

황해 동부해역 표층퇴적물의 중금속 분포 특성을 파악하기 위하여 입도, 유기탄소(TOC)와 함께 중금속 원소들(Cu, Pb, Zn, Cd, Cr, Mn, As, Ni, Co, Li, Fe, Al)의 농도를 분석하였다. 연구결과에 따르면, 일부 정점에서 Pb, Mn, As를 제외하면 모든 중금속 농도의 분포는 입도 및 TOC의 분포와 유사하게 황해 중앙해역에서 상대적으로 높고, 한국 연안으로 갈수록 감소하는 경향을 보였다. 입도와 중금속 농도간의 관계를 통하여 대부분의 금속은 입도가 세립할수록 농도가 높게 나타나는 일반적인 경향을 보였다. 그러나 일부 정점에서 Pb은 조립질 퇴적물에서의 암석기원(feldspar) 영향, Mn은 생물기원($CaCO_3$) 영향, As는 중광물(pyrite) 특성에 따라 분포 양상이 다르게 나타났다. 과거에 조사한 자료(2000년)와 비교했을 때, 황해 동부해역에서 지난 15년 동안의 추가적인 중금속 농축은 없었고, 투기해역에 대한 저질환경은 과거에 비해 크게 개선되지 못한 것으로 나타났다. 연구해역 내 모든 중금속의 농도는 한국과 중국에서 규정하고 있는 최소기준(TEL, MSQ-1)보다 낮았지만, 농축지수(enrichment factor; EF), 농집지수(geo-accumulation index; $I_{geo}$), 생태위해성지수(ecological risk index; ERI)는 Cu, Pb, Zn, Cr이 황해 중앙해역에서 상대적으로 높게 나타났다.

In order to determine the distribution characteristics of the heavy metals in surface sediments of the eastern Yellow Sea, heavy metal concentrations (Cu, Pb, Zn, Cd, Cr, Mn, As, Ni, Co, Li, Fe and Al) together with grain size and total organic carbon (TOC), were analyzed. The concentrations of all heavy metals, with the exception of Pb, Mn and As in some stations, were relatively high in the central area of the Yellow Sea and tended to decrease toward the Korean coast. A significant relationship between grain size and concentrations of heavy metals suggested that they were mostly controlled by quartz dilution effect. However, at some stations, Pb, Mn and As exhibited different distribution patterns. For Pb, the differences were caused by petrogenetic influences (feldspar) in coarse-grained sediments. In the case of Mn, biogenetic influences ($CaCO_3$) affected distribution patterns. As was distributed differently because of the existence of a heavy mineral (pyrite). A comparison with previous data (collected in 2000) shows that the heavy metal concentration in the eastern Yellow Sea has not increased over the past fifteen years. The sedimentary environment of dumping sites in the Yellow Sea has not been significantly improved during this period. The results of the pollution assessment revealed that the concentrations of heavy metals in the study area were lower than lower criteria (TEL, MSQ-1) in Korean and Chinese sediment quality guidelines. The enrichment factor (EF), geo-accumulation index ($I_{geo}$) and ecological risk index (ERI) of Cu, Pb, Zn and Cr were higher in the central area of the Yellow Sea.

키워드

GHOHBG_2018_v23n4_179_f0001.png 이미지

Fig. 1. Map showing the sampling sites in the eastern Yellow Sea.

GHOHBG_2018_v23n4_179_f0002.png 이미지

Fig. 2. The spatial distribution of heavy metal concentrations in surface sediments.

GHOHBG_2018_v23n4_179_f0003.png 이미지

Fig. 3. Relationships between heavy metals and mean grain size in surface sediments.

GHOHBG_2018_v23n4_179_f0004.png 이미지

Fig. 4. Scatter plots of years vs. heavy metals(mg/kg)/Al(%) ratios in surface sediments.

GHOHBG_2018_v23n4_179_f0005.png 이미지

Fig. 5. Box-and-whisker plots for (a) EF and (b) Igeo of heavy metals in surface sediments. plots show median, 10th, 25th, 75th and 90th percentiles as vertical boxes with error bars. The outliers are shown as ‘●’.

Table 1. The classification of EF, Igeo and ERI

GHOHBG_2018_v23n4_179_t0001.png 이미지

Table 2. Summary of heavy metal concentrations in surface sediments from the eastern Yellow Sea and other regions together with the sediment quality guidelines

GHOHBG_2018_v23n4_179_t0002.png 이미지

Table 3. Ei and ERI values of heavy metals in surface sediments

GHOHBG_2018_v23n4_179_t0003.png 이미지

참고문헌

  1. Abdel Ghani, S., G. El Zokm, A. Shobier, T. Othman and M. Shreadah, 2013. Metal pollution in surface sediments of Abu-Qir Bay and Eastern Harbour of Alexandria, Egypt. Egyptian J. Aquat. Res., 39: 1-12. https://doi.org/10.1016/j.ejar.2013.03.001
  2. Choi, M., H. Yi, S.Y. Yang, C. Lee and H. Cha, 2007. Identification of Pb sources in Yellow Sea sediments using stable Pb isotope ratios. Mar. Chem., 107(2): 255-274. https://doi.org/10.1016/j.marchem.2007.07.008
  3. Chung C., K. Song, K. Choi, Y. Kim, H. Kim, J. Jung and C. Kim, 2017. Variations in the concentrations of heavy metals through enforcement of a rest-year system and dredged sediment capping at the Yellow Sea-Byung dumping site, Korea. Mar. Pollut. Bull., 124: 512-520. https://doi.org/10.1016/j.marpolbul.2017.07.032
  4. CSBTS, 2002. Marine Sediment Quality, China.
  5. El Bilali, L., P.E. Rasmussen, G.E.M. Hall and D. Fortin, 2002. Role of sediment composition in trace metal distribution in lake sediments. Appl. Geochem., 17(9): 1171-1181. https://doi.org/10.1016/S0883-2927(01)00132-9
  6. Fang, T., J. Li, H. Feng and H. Chen, 2009. Distribution and contamination of trace metals in surface sediments of the East China Sea. Mar. Environ. Res., 68(4): 178-187. https://doi.org/10.1016/j.marenvres.2009.06.005
  7. Hakanson, L., 1980. An ecological risk index for aquatic pollution control: a sedimentological approach. Water Res., 14: 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
  8. He, Z., J. Song, N. Zhang, P. Zhang and Y. Xu, 2009. Variation characteristics and ecological risk of heavy metals in the south Yellow Sea surface sediments. Environ Monit Assess., 157: 515-528. https://doi.org/10.1007/s10661-008-0552-7
  9. Huang, P., T. Li, A. Li, X. Yu and N. Hu, 2014. Distribution, enrichment and sources of heavy metals in surface sediments of the North Yellow Sea. Cont. Shelf. Res., 73: 1-13. https://doi.org/10.1016/j.csr.2013.11.014
  10. Hwang, D., S. Kim, M. Choi, I. Lee, S. Kim and H. Choi, 2016. Monitoring of trace metals in coastal sediments around Korean Peninsula. Mar. Pollut. Bull., 102: 230-239. https://doi.org/10.1016/j.marpolbul.2015.09.045
  11. Jiang, X., A. Teng, W. Xu and X. Liu, 2014. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea. Mar. Pollut. Bull., 83: 366-375. https://doi.org/10.1016/j.marpolbul.2014.03.020
  12. Kim, K.T., H.S. Shin, C.R. Lim, Y.G. Cho, G.H. Hong, S.H. Kim, D.B. Yang and M.S. Choi, 2000. Geochemistry of Pb in surface sediments of the Yellow Sea: contents and speciation. J. Kor. Soc. Oceanogr., 35: 179-191.
  13. Kim, P., M. Park and K. Sung, 2009. Distribution of heavy metals in marine sediments at the ocean waste disposal site in the Yellow Sea, South Korea. Geosci. J., 13: 15-24. https://doi.org/10.1007/s12303-009-0002-8
  14. Kim, J., D.l. Lim, D. Jung, J. Kang, H. Jung, H. Woo, K. Jeong and Z. Xu, 2018. Sedimentary mercury (Hg) in the marginal seas adjacent to Chinese high-Hg emissions: Source-to-sink, mass inventory and accumulation history. Mar. Pollut. Bull., 128: 428-437. https://doi.org/10.1016/j.marpolbul.2018.01.058
  15. Koh, H., Y. Choi, S. Park, H. Cha, D. Chang, C. Lee and H. Yoon, 2013. Concentration of metallic elements in surface sediments at awaste disposal site in the Yellow Sea. J. Environ. Sci. Int., 22(7): 787-799. https://doi.org/10.5322/JESI.2013.22.7.787
  16. Lee, M., W. Bae, J. Chung, H.S. Jung and H. Shim, 2008. Seasonal and spatial characteristics of seawater and sediment at Youngil Bay, southeast coast of Korea. Mar. Pollut. Bull., 57: 325-334. https://doi.org/10.1016/j.marpolbul.2008.04.038
  17. Li, X., L. Liu, Y. Wang, G. Luo, X. Chen, X. Yang, B. Gao and X. He, 2012. Integrated assessment of heavy metal contamination in sediments from a coastal industrial basin, NE China. PloS One, 7(6): e39690. https://doi.org/10.1371/journal.pone.0039690
  18. Lim, D., J.W. Choi, H.S. Jung, H.Y. Choi and Y.O. Kim, 2007. Natural background level analysis of heavy metal concentration in Korean coastal sediments. Ocean Polar Res., 29(4): 379-389. https://doi.org/10.4217/OPR.2007.29.4.379
  19. Lim, D., J.W. Choi, H.H. Shin, D.H. Jeong and H.S. Jung, 2013. Toxicological impact assessment of heavy metal contamination on macrobenthic communities in southern coastal sediments of Korea. Mar. Pollut. Bull., 73: 362-368. https://doi.org/10.1016/j.marpolbul.2013.05.037
  20. Long, E.R., L.J. Field and D.D. Macdonald, 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem., 17(4): 714-727. https://doi.org/10.1897/1551-5028(1998)017<0714:PTIMSW>2.3.CO;2
  21. Masuda, H., Y. Yamatani and M. Okai, 2005. Transformation of arsenic compounds in modern intertidal sediments of Iriomote Island, Japan. J. geochem. explor., 87: 73-81. https://doi.org/10.1016/j.gexplo.2005.07.004
  22. MOF, 2013. Marine Environment Quality Standards, Korea.
  23. Muller, G., 1981. Die Schwermetallbelastung der sedimente des Neckars und seiner Nebenflusse: Eine Bestandsaufnahme. Chem. Zeitung, 105: 157-164.
  24. Park, J., M. Choi, Y. Song and D. Lim, 2017. Tracing the origin of Pb using stable Pb isotopes in surface sediments along the Korean Yellow Sea coast. Ocean Sci. J., 52(2): 177-192. https://doi.org/10.1007/s12601-017-0020-9
  25. Song, K., S. Lee, S. Lee and Y. Ahn, 2007. Ecological model experiments of the spring bloom at a dumping site in the Yellow Sea. Ocean Polar Res., 29(3): 217-231. https://doi.org/10.4217/OPR.2007.29.3.217
  26. Song, Y.H., M.S. Choi and Y.W. Ahn, 2011. Trace metals in Chun-su Bay sediments. J. Kor. Soc. Oceanogr., 16(4): 169-179.
  27. Sreekanth, A., S.K. Mrudulrag, E. Cheriyan and C.H. Sujatha, 2015. Trace metal enrichment and organic matter sources in the surface sediments of Arabian Sea along southwest India (Kerala coast). Mar. Pollut. Bull., 101: 938-946. https://doi.org/10.1016/j.marpolbul.2015.10.040
  28. UNDP/GEF YSLME, 2000. The Yellow Sea: Analysis of the environmental status and trends, 2: 234-243.
  29. Wang, Y., M. Ling, R. Liu, P. Yu, A. Tang, X. Luo and Q. Ma, 2017. Distribution and source identification of trace metals in the sediment of Yellow River Estuary and the adjacent Laizhou Bay. Phys. Chem. Earth., 97: 62-70. https://doi.org/10.1016/j.pce.2017.02.002
  30. Xu, X., Z. Cao, Z. Zhang, R. Li and B. Hu, 2016. Spatial distribution and pollution assessment of heavy metals in the surface sediments of the Bohai and Yellow Seas. Mar. Pollut. Bull., 110: 596-602. https://doi.org/10.1016/j.marpolbul.2016.05.079
  31. Yang, S.Y., H.S. Jung, D.I. Lim and C.X. Li, 2003. A review on the provenance discrimination of sediments in the Yellow Sea. Earth. Sci. Rev., 63: 93-120. https://doi.org/10.1016/S0012-8252(03)00033-3
  32. Yuan, H., J. Song, X. Li, N. Li and L. Duan, 2012. Distribution and contamination of heavy metals in surface sediments of the South Yellow Sea. Mar. Pollut. Bull., 64: 2151-2159. https://doi.org/10.1016/j.marpolbul.2012.07.040
  33. Zhang, J. and C.L. Liu, 2002. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci., 54: 1051-1070. https://doi.org/10.1006/ecss.2001.0879
  34. Zhang, J. and X. Gao, 2015. Heavy metals in surface sediments of the intertidal Laizhou Bay, Bohai Sea, China: distributions, sources and contamination assessment. Mar. Pollut. Bull., 98: 320-327. https://doi.org/10.1016/j.marpolbul.2015.06.035
  35. Zhao, Y.Y. and M.C. Yan, 1994. Geochemistry of the China Shelf Sea. Science Press, Beijing, 202pp.