Fig. 1. Schematic diagram of problem and improvement of Si anode material.
Fig. 2. Rotary kiln reactor.
Fig. 3. PC coating and CNF growth process diagram.
Fig. 4. PC coated Si for TEM analysis: thickness measurement with (a) 5 nm scale, (b) 10 nm scale, (c) 20 nm scale.
Fig. 5. Charge and discharge voltage profile of PC coated Si.
Fig. 6. Charge and discharge characteristics of PC coated Si up to 10 cycles: (a) capacity, (b) efficiency.
Fig. 7. SEM images of CNF: (a) 5 μm scale, (b) 1 μm scale, (c) 500 nm scale, (d) 500 nm scale after 6% hydrochloric acid treatment.
Fig. 8. TEM-EDS analysis: (a) TEM image of Fe catalyst, (b) EDS mapping of Fe catalyst, (c) TEM image for acid treatment, (d) EDS mapping for acid treatment.
Fig. 9. Component analysis of Si/C/CNF material after removal of Fe with acid treatment.
Fig. 10. Evaluation of reversible capacity of Si with CNF growth: (a) CNF 78 wt% growth, (b) CNF 100 wt% growth, (c) CNF 140 wt% growth.
Fig. 11. Charge and discharge characteristics of CNF 100 wt% up to 10 cycles: (a) capacity, (b) efficiency.
Table 1. Comparison of anode electrode properties for particle size controlled Si and coated Si and commercial SiO
Table 2. Charging and discharging voltage profile of Si/C/CNF
References
- Dmitri, B. M., Victor, E. B., Rusli., and Cesare, S., "Revising Morphology of <111>-oriented Silicon and Germanium Nanowires," Nano Convergence, 2(16), (2015).
- Lee, S. W., Lee, H. W., Ryu, I., Nix, W. D., Gao, H. and Cui, Y., "Kinetics and Fracture Resistance of Lithiated Silicon Nanostructure Pairs Controlled by Their Mechanical Interaction," Nat. Commun., 6(7533), (2015).
- Xin, X., Zhou, X., Wang, F., Yao, X., Xu, X., Zhu, Y. and Liu, Z., "A 3D Porous Architecture of Si/graphene Nanocomposite as High-performane Anode Materials for Li-ion Batteries," J. Mater. Chem., 22(16), 7724-7730(2012). https://doi.org/10.1039/c2jm00120a
- Wang, B., Li, X., Zhang, X., Luo, B., Jin, M., Liang, M., Dayeh, S. A., Picraux, S. T. and Zhi, L., "Adaptable Silicon-Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes," J. Am. Chem. Soc., 7(2), 1437-1445 (2013).
- Jang, S. M., Miyawaki, J., Tsuji, M., Mochida, I. and Yoon, S. H., "The Preparation of a Novel Si-CNF Composite as an Effective Anodic Material for Lithium-ion Batteries," Carbon, 47(15), 3383-3391(2009). https://doi.org/10.1016/j.carbon.2009.07.018
- Jung, D. H. and Chun, Y. N., "Study on the Design of Attached Revolution Body Horizontal Rotary Kiln Dryer and the Optimum Operational Conditions," J. Ind. Eng. Chem., 18(6), 575-579(2007).
- Eeom, M. J., Hahn, T. J., Lee, H. K. and Choi, S. M., "Performance Analysis Modeling for Design of Rotary Kiln Reactors," Kosco, 18(3), 9-23(2013).
- Britton, P. F., Sheehan, M. E. and Schneider, P. A., "A Physical Description of Solids Transport in Flighted Rotary Dryers," Powder Technol., 165(2), 153-160(2006). https://doi.org/10.1016/j.powtec.2006.04.006
- Li, S. Q., Yan, J. H., Li, R. D., Chi, Y. and Cen, K. F., "Axial Transport and Residence Time of MSW in Rotary Kilns: Part I. Experimental," Powder Technol., 126(3), 217-227(2002). https://doi.org/10.1016/S0032-5910(02)00014-1
- Dimov, N., Kugino, S. and Yoshio, M., "Carbon-coated Silicon as Anode Material for Lithium Ion Batteries: Advantages and Limitations," Electrochim. Acta, 48(11), 1579-1587(2003). https://doi.org/10.1016/S0013-4686(03)00030-6
- Kim, T. R., Wu, J. Y., Hu, Q. Li. and Kim, M. S., "Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery," Carbon Letters, 8(4), 335-339(2007). https://doi.org/10.5714/CL.2007.8.4.335
- Zhang, Z. L., Zhang, M. J., Wang, Y. H., Tan, Q. Q., Lv, X., Zhong, Z. Y., Li, H. and Su, F. B., "Amorphous Silicon-carbon Nanospheres Synthesized by Chemical Vapor Deposition Using Cheap Methyltrichlorosilane as Improved Anode Materials for Li-ion Batteries," Nanoscale, 5(12), 5384-5389(2013). https://doi.org/10.1039/c3nr00635b
- Jiang, T., Zhang, S. C., Lin, R. X., Liu, G. R. and Liu, W. B., "Electrochemical Characterization of Cellular Si and Si/C Anodes for Lithium Ion Battery," Int. J. Electrochem. Sc., 8, 9644-9651 (2013).
- Liu, H. P., Qiao, W. M., Zhan, L. and Ling, L. C., "In situ Growth of a Carbon Nanofiber/Si Composite and Its Application in Liion Storage," New Carbon Mater., 24(2), 124-130(2009). https://doi.org/10.1016/S1872-5805(08)60042-6
- Guo, L. P., Yoon, W. Y. and Kim, B. K., "Fabrication and Characterization of a Silicon-Carbon Nanocomposite Material by Pyrolysis for Lithium Secondary Batteries," Electron Mater. Lett., 8(4), 405-409(2012). https://doi.org/10.1007/s13391-012-2066-2
- Kim, Y. J., Lee, H. J., Lee, S. W., Cho, B. W. and Park, C. R., "Effects of Sulfuric Acid Treatment on the Microstructure and Electrochemical Performance of a Polyacrylonitrile (PAN)-Based Carbon Anode," Carbon, 43(1), 163-169(2005). https://doi.org/10.1016/j.carbon.2004.09.001
- Zhang, Z. L., Wang, Y. H., Ren, W. F., Tan, Q. Q., Chen, Y. F., Li, H., Zhong, Z. Y. and Su, F. B., "Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as High-Performance Anodes of Lithium Ion Batteries," Angew. Chem. Int. Edit., 126(20), 5265-5269(2014). https://doi.org/10.1002/ange.201310412
- Yoon, S. H., Park, C. W., Yang, H. J., Korai, Y. Z., Mochida, I. S., Baker, R. K. and Rodriguez, N. M., "Novel Carbon Nanofibers of High Graphitization as Anodic Materials for Lithium ion Secondary Batteries," Carbon, 42(1), 21-32(2004). https://doi.org/10.1016/j.carbon.2003.09.021
- Si, Q., Hanai, K., Ichikawa, T., Hirano, A., Imanishi, N., Takeda, Y. and Yamamoto, O., "A High Performance Silicon/carbon Composite Anode with Carbon Nanofiber for Lithium-ion Batteries," J. Power Sources, 195(6), 1720-1725(2010). https://doi.org/10.1016/j.jpowsour.2009.09.073