DOI QR코드

DOI QR Code

Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor

회전킬른반응기를 이용한 리튬이온전지용 Si/C/CNF 음극활물질의 제조 및 전기화학적 특성 조사

  • Jeon, Do-Man (EG Corporation) ;
  • Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University) ;
  • Rhee, Young-Woo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2018.09.04
  • Accepted : 2018.10.12
  • Published : 2018.12.01

Abstract

Graphite is used as a sample anode active material. However, since the maximum theoretical capacity is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of a high capacity lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is higher than that of graphite. However, it is not suitable for direct application to the anode active material because it has a volume expansion of 400%. In order to minimize the decrease of the discharge capacity due to the volume expansion, the Si was pulverized by the dry method to reduce the mechanical stress and the volume change of the reaction phase, and the change of the volume was suppressed by coating the carbon layers to the particle size controlled Si particles. And carbon fiber is grown like a thread on the particle surface to control secondary volume expansion and improve electrical conductivity. The physical and chemical properties of the materials were measured by XRD, SEM and TEM, and their electrochemical properties were evaluated. In this study, we have investigated the synthesis method that can be used as anode active material by improving cycle characteristics of Si.

흑연은 리튬이온전지에 사용 되는 대표적인 음극활물질이다. 그러나 최대 이론 용량이 $372mA\;h\;g^{-1}$으로 제한되기 때문에 고용량의 리튬이온전지 개발을 위해서는 새로운 음극 소재 활물질이 필요하다. 실리콘의 최대 이론 용량은 $4200mA\;h\;g^{-1}$으로 흑연보다 높은 값을 나타내지만 부피 팽창이 400%로 크기 때문에 음극 소재 활물질로 바로 적용하기에는 적합하지 않다. 따라서 부피 팽창으로 인한 방전 용량의 감소를 최소화하기 위해 건식 방법으로 실리콘을 분쇄 하여 기계적 응력 및 반응상의 체적 변화를 감소시키고 입도 제어 된 실리콘 입자에 탄소를 코팅하여 체적의 변화를 억제하였다. 그리고 탄소 섬유를 입자 표면에 실타래처럼 성장시켜 2차적으로 부피 팽창을 제어하고 전기전도성을 개선하였다. 실험 변수에 따른 재료들의 물리화학적 특성을 XRD, SEM 및 TEM을 사용하여 측정하였고 전기화학적 특성을 평가 하였다. 본 연구에서는 실리콘의 수명 특성을 향상시켜 음극 소재 활물질로 사용 할 수 있는 합성 방법에 대하여 알아보았다.

Keywords

HHGHHL_2018_v56n6_901_f0001.png 이미지

Fig. 1. Schematic diagram of problem and improvement of Si anode material.

HHGHHL_2018_v56n6_901_f0002.png 이미지

Fig. 2. Rotary kiln reactor.

HHGHHL_2018_v56n6_901_f0003.png 이미지

Fig. 3. PC coating and CNF growth process diagram.

HHGHHL_2018_v56n6_901_f0004.png 이미지

Fig. 4. PC coated Si for TEM analysis: thickness measurement with (a) 5 nm scale, (b) 10 nm scale, (c) 20 nm scale.

HHGHHL_2018_v56n6_901_f0005.png 이미지

Fig. 5. Charge and discharge voltage profile of PC coated Si.

HHGHHL_2018_v56n6_901_f0006.png 이미지

Fig. 6. Charge and discharge characteristics of PC coated Si up to 10 cycles: (a) capacity, (b) efficiency.

HHGHHL_2018_v56n6_901_f0007.png 이미지

Fig. 7. SEM images of CNF: (a) 5 μm scale, (b) 1 μm scale, (c) 500 nm scale, (d) 500 nm scale after 6% hydrochloric acid treatment.

HHGHHL_2018_v56n6_901_f0008.png 이미지

Fig. 8. TEM-EDS analysis: (a) TEM image of Fe catalyst, (b) EDS mapping of Fe catalyst, (c) TEM image for acid treatment, (d) EDS mapping for acid treatment.

HHGHHL_2018_v56n6_901_f0009.png 이미지

Fig. 9. Component analysis of Si/C/CNF material after removal of Fe with acid treatment.

HHGHHL_2018_v56n6_901_f0010.png 이미지

Fig. 10. Evaluation of reversible capacity of Si with CNF growth: (a) CNF 78 wt% growth, (b) CNF 100 wt% growth, (c) CNF 140 wt% growth.

HHGHHL_2018_v56n6_901_f0011.png 이미지

Fig. 11. Charge and discharge characteristics of CNF 100 wt% up to 10 cycles: (a) capacity, (b) efficiency.

Table 1. Comparison of anode electrode properties for particle size controlled Si and coated Si and commercial SiO

HHGHHL_2018_v56n6_901_t0001.png 이미지

Table 2. Charging and discharging voltage profile of Si/C/CNF

HHGHHL_2018_v56n6_901_t0002.png 이미지

References

  1. Dmitri, B. M., Victor, E. B., Rusli., and Cesare, S., "Revising Morphology of <111>-oriented Silicon and Germanium Nanowires," Nano Convergence, 2(16), (2015).
  2. Lee, S. W., Lee, H. W., Ryu, I., Nix, W. D., Gao, H. and Cui, Y., "Kinetics and Fracture Resistance of Lithiated Silicon Nanostructure Pairs Controlled by Their Mechanical Interaction," Nat. Commun., 6(7533), (2015).
  3. Xin, X., Zhou, X., Wang, F., Yao, X., Xu, X., Zhu, Y. and Liu, Z., "A 3D Porous Architecture of Si/graphene Nanocomposite as High-performane Anode Materials for Li-ion Batteries," J. Mater. Chem., 22(16), 7724-7730(2012). https://doi.org/10.1039/c2jm00120a
  4. Wang, B., Li, X., Zhang, X., Luo, B., Jin, M., Liang, M., Dayeh, S. A., Picraux, S. T. and Zhi, L., "Adaptable Silicon-Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes," J. Am. Chem. Soc., 7(2), 1437-1445 (2013).
  5. Jang, S. M., Miyawaki, J., Tsuji, M., Mochida, I. and Yoon, S. H., "The Preparation of a Novel Si-CNF Composite as an Effective Anodic Material for Lithium-ion Batteries," Carbon, 47(15), 3383-3391(2009). https://doi.org/10.1016/j.carbon.2009.07.018
  6. Jung, D. H. and Chun, Y. N., "Study on the Design of Attached Revolution Body Horizontal Rotary Kiln Dryer and the Optimum Operational Conditions," J. Ind. Eng. Chem., 18(6), 575-579(2007).
  7. Eeom, M. J., Hahn, T. J., Lee, H. K. and Choi, S. M., "Performance Analysis Modeling for Design of Rotary Kiln Reactors," Kosco, 18(3), 9-23(2013).
  8. Britton, P. F., Sheehan, M. E. and Schneider, P. A., "A Physical Description of Solids Transport in Flighted Rotary Dryers," Powder Technol., 165(2), 153-160(2006). https://doi.org/10.1016/j.powtec.2006.04.006
  9. Li, S. Q., Yan, J. H., Li, R. D., Chi, Y. and Cen, K. F., "Axial Transport and Residence Time of MSW in Rotary Kilns: Part I. Experimental," Powder Technol., 126(3), 217-227(2002). https://doi.org/10.1016/S0032-5910(02)00014-1
  10. Dimov, N., Kugino, S. and Yoshio, M., "Carbon-coated Silicon as Anode Material for Lithium Ion Batteries: Advantages and Limitations," Electrochim. Acta, 48(11), 1579-1587(2003). https://doi.org/10.1016/S0013-4686(03)00030-6
  11. Kim, T. R., Wu, J. Y., Hu, Q. Li. and Kim, M. S., "Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery," Carbon Letters, 8(4), 335-339(2007). https://doi.org/10.5714/CL.2007.8.4.335
  12. Zhang, Z. L., Zhang, M. J., Wang, Y. H., Tan, Q. Q., Lv, X., Zhong, Z. Y., Li, H. and Su, F. B., "Amorphous Silicon-carbon Nanospheres Synthesized by Chemical Vapor Deposition Using Cheap Methyltrichlorosilane as Improved Anode Materials for Li-ion Batteries," Nanoscale, 5(12), 5384-5389(2013). https://doi.org/10.1039/c3nr00635b
  13. Jiang, T., Zhang, S. C., Lin, R. X., Liu, G. R. and Liu, W. B., "Electrochemical Characterization of Cellular Si and Si/C Anodes for Lithium Ion Battery," Int. J. Electrochem. Sc., 8, 9644-9651 (2013).
  14. Liu, H. P., Qiao, W. M., Zhan, L. and Ling, L. C., "In situ Growth of a Carbon Nanofiber/Si Composite and Its Application in Liion Storage," New Carbon Mater., 24(2), 124-130(2009). https://doi.org/10.1016/S1872-5805(08)60042-6
  15. Guo, L. P., Yoon, W. Y. and Kim, B. K., "Fabrication and Characterization of a Silicon-Carbon Nanocomposite Material by Pyrolysis for Lithium Secondary Batteries," Electron Mater. Lett., 8(4), 405-409(2012). https://doi.org/10.1007/s13391-012-2066-2
  16. Kim, Y. J., Lee, H. J., Lee, S. W., Cho, B. W. and Park, C. R., "Effects of Sulfuric Acid Treatment on the Microstructure and Electrochemical Performance of a Polyacrylonitrile (PAN)-Based Carbon Anode," Carbon, 43(1), 163-169(2005). https://doi.org/10.1016/j.carbon.2004.09.001
  17. Zhang, Z. L., Wang, Y. H., Ren, W. F., Tan, Q. Q., Chen, Y. F., Li, H., Zhong, Z. Y. and Su, F. B., "Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as High-Performance Anodes of Lithium Ion Batteries," Angew. Chem. Int. Edit., 126(20), 5265-5269(2014). https://doi.org/10.1002/ange.201310412
  18. Yoon, S. H., Park, C. W., Yang, H. J., Korai, Y. Z., Mochida, I. S., Baker, R. K. and Rodriguez, N. M., "Novel Carbon Nanofibers of High Graphitization as Anodic Materials for Lithium ion Secondary Batteries," Carbon, 42(1), 21-32(2004). https://doi.org/10.1016/j.carbon.2003.09.021
  19. Si, Q., Hanai, K., Ichikawa, T., Hirano, A., Imanishi, N., Takeda, Y. and Yamamoto, O., "A High Performance Silicon/carbon Composite Anode with Carbon Nanofiber for Lithium-ion Batteries," J. Power Sources, 195(6), 1720-1725(2010). https://doi.org/10.1016/j.jpowsour.2009.09.073