DOI QR코드

DOI QR Code

리튬이온커패시터용 Polyaniline/WO3 음극 제조 및 이의 광 조사에 따른 전기화학적 특성 변화

Synthesis of Polyaniline/WO3 Anode for Lithium Ion Capacitor and Its Electrochemical Characteristics under Light Irradiation

  • 박이슬 (부경대학교 화학공학과)
  • Park, Yiseul (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2018.08.13
  • 심사 : 2018.09.17
  • 발행 : 2018.12.01

초록

본 연구에서는 리튬이온커패시터의 음극으로 polyaniline $(PANI)/WO_3$ 전극을 제조하고, 이의 전기화학적 특성을 측정, 분석하였다. $WO_3$ 전극 표면에 PANI를 전기화학적으로 담지 하였을 때 PANI의 용량이 더해져 $WO_3$ 전극보다 충, 방전 용량이 향상되었다. 한편, 충, 방전 시 태양광을 조사하여 충, 방전 용량과 쿨롱 효율(coulombic efficiency)에 빛 조사가 미치는 영향을 파악하였다. $WO_3$ 전극과 $PANI/WO_3$ 전극에 태양광을 조사하였을 때, 두 전극의 충, 방전 용량과 쿨롱 효율은 태양광을 조사하지 않았을 때보다 증가하였다. 이는 $WO_3$가 빛 조사에 의해 광전자를 생성하여 전극의 전기화학적 특성에 영향을 주기 때문으로 해석되며, $PANI/WO_3$의 경우 PANI 또한 빛에 의해 여기 될 수 있어 전극의 특성이 변하게 된다. 빛 조사에 의해 추가로 생성된 광전자가 $Li^+$ 이온의 삽입(intercalation)에 사용되어 용량을 증가시킬 수 있을 뿐 아니라, 전극의 전도성을 높여 쿨롱 효율을 향상 시키는 것으로 여겨진다. $PANI/WO_3$는 충, 방전을 반복하여 진행하게 되면 PANI의 불안정성으로 인해 용량이 점차 감소되게 되지만, 빛 조사 시에는 생성된 광전자와 정공으로 인한 산화-환원 반응에 의해 PANI의 안정성이 크게 향상되어 충, 방전 용량의 감소없이 안정적으로 유지되었다.

In this study, polyaniline $(PANI)/WO_3$ electrode was prepared as an anode of a lithium ion capacitor, and its electrochemical characteristics were measured and analyzed. When PANI was electrochemically deposited on the surface of $WO_3$ electrode, the capacity of $PANI/WO_3$ was improved with increase of the deposited amounts of PANI. Furthermore, the effect of light irradiation on capacity and coulombic efficiency was examined by irradiating sunlight during charging and discharging. When the light was irradiated to the $WO_3$ electrode and the $PANI/WO_3$ electrode, those capacities and coulombic efficiencies were increased compared to that measured under the dark condition. It is attributed to the photocatalytic property of $WO_3$ that can generate photoelectrons by light irradiation. In $PANI/WO_3$ electrode, PANI also can be excited under the light irradiation with affecting the electrochemical property of electrode. The photoelectrons improve the capacity by participating in the intercalation of $Li^+$ ions, and also improve the coulombic efficiency by facilitating electrons' transport. Under the dark condition, the capacity of $PANI/WO_3$ was gradually reduced with increase of cycles due to a poor stability of PANI. However, the stability of PANI was significantly improved by the light irradiation, which is attributed to the oxidation-reduction reaction originated from the photogenerated electrons and holes in $PANI/WO_3$.

키워드

HHGHHL_2018_v56n6_884_f0001.png 이미지

Fig. 2. Cyclic voltammograms of PANI/WO3 prepared with different passed charge (Q) (0.5, 1, 1.5, 2, 3 mAh) for PANI deposition (a) at dark and (b) under light irradiation.

HHGHHL_2018_v56n6_884_f0002.png 이미지

Fig. 3. Specific capacitance of PANI/WO3 with different amounts of PANI under dark and light irradiation.

HHGHHL_2018_v56n6_884_f0003.png 이미지

Fig. 4. Cyclic voltammograms of WO3, PANI/FTO (Q = 1 mAh) and PANI/WO3 (Q = 1 mAh) (a) at dark and (b) under light irradiation.

HHGHHL_2018_v56n6_884_f0004.png 이미지

Fig. 5. Discharge/charge curves of WO3 and PANI/WO3 (Q = 1 mAh) electrodes at a current density of 0.35 A g-1 (a) at dark, (b) under light irradiation.

HHGHHL_2018_v56n6_884_f0005.png 이미지

Fig. 6. Cycle performance of WO3 and PANI/WO3 (Q = 1 mAh) electrodes at a current density of 0.35 A g-1 (a) at dark, (b) under light irradiation.

HHGHHL_2018_v56n6_884_f0006.png 이미지

Fig. 1. (a) SEM image of prepared WO3 electrode. (b) X-ray diffraction (XRD) patterns of PANI/WO3 (passed charge (Q) = 1 mAh) and WO3 electrode. Solid circle and open circle indicates WO3 and FTO, respectively.

참고문헌

  1. Zhou, G., Li, F. and Cheng, H.-M., "Progress in Flexible Lithium Batteries and Future Prospects," Energy Environ. Sci., 7, 1307-1338(2014). https://doi.org/10.1039/C3EE43182G
  2. Ban, C. M., Wu, Z. C., Gillaspie, D. T., Chen, L., Yan, Y. F., Blackburn, J. L. and Dillon, A. C., "Nanostructured $Fe_3O_4$/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode," Adv. Mater., 22, E145-E149(2010). https://doi.org/10.1002/adma.200904285
  3. Chen, Z., Zhang, D. Q., Wang, X. L., Jia, X. L., Wei, F., Li, H. X. and Lu, Y. F., "High-Performance Energy-Storage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks," Adv. Mater., 24, 2030-2036(2012). https://doi.org/10.1002/adma.201104238
  4. Hu, L., Wu, H., Mantia, F. L., Yang, Y. and Cui, Y., "Thin, Flexible Secondary Li-ion Paper Batteries," ACS Nano, 4, 5843-5848(2010). https://doi.org/10.1021/nn1018158
  5. Jia, X. L., Yan, C. Z., Chen, Z., Wang, R. R., Zhang, Q., Guo, L., Wei, F. and Lu, Y. F., "Direct Growth of Glexible $LiMn_2O_4$/CNT Lithium-Ion Cathodes," Chem. Commun., 47, 9669-9671(2011). https://doi.org/10.1039/c1cc13536h
  6. Wu, Y., Wei, Y., Wang, J. P., Jiang, K. L. and Fan, S. S., "Conformal $Fe_3O_4$ Sheath on Aligned Carbon Nanotube Scaffolds as High-Performance Anodes for Lithium Ion Batteries," Nano Lett., 13, 818-823(2013). https://doi.org/10.1021/nl3046409
  7. Luo, S., Wang, K., Wang, J., Jiang, K., Li, Q. and Fan, S., "Binder-Free $LiCoO_2$/Carbon Nanotube Cathodes for High-Performance Lithium Ion Batteries," Adv. Mater., 24, 2294-2298(2012). https://doi.org/10.1002/adma.201104720
  8. Li, N., Chen, Z. P., Ren, W. C., Li, F. and Cheng, H. M., "Flexible Graphene-Based Lithium Ion Batteries with Ultrafast Charge and Discharge Rates," Proc. Natl. Acad. Sci. U.S.A., 109, 17360-17365(2012). https://doi.org/10.1073/pnas.1210072109
  9. Cheng, Y., Lu, S., Zhang, H., Varanasi, C. V. and Liu, J., "Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors," Nano Lett., 12, 4206-4211(2012). https://doi.org/10.1021/nl301804c
  10. Koo, M., Park, K. I., Lee, S. H., Suh, M., Jeon, D. Y., Choi, J. W., Kang, K. and Lee, K. J., "Bendable Inorganic Thin-Film Battery for Fully Flexible Electronic Systems," Nano Lett., 12, 4810-4816 (2012). https://doi.org/10.1021/nl302254v
  11. Choi, K.-H., Cho, S.-J., Kim, S.-H., Kwon, Y. H., Kim, J. Y. and Lee, S.-Y., "Thin, Deformable, and Safety-Reinforced Plastic Crystal Polymer Electrolytes for High-Performance Flexible Lithium-Ion Batteries," Adv. Funct. Mater., 24, 44-52(2014). https://doi.org/10.1002/adfm.201301345
  12. Lee, S.-H., Deshpande, R., Parilla, P. A., Jones, K. M., To, B., Mahan, A. H. and Dillon, A. C., "Crystalline $WO_3$ Nanoparticles for Highly Improved Electrochromic Applications," Adv. Mater., 18, 763-766(2006). https://doi.org/10.1002/adma.200501953
  13. Li, W.-J. and Fu, Z.-W., "Nanostructured $WO_3$ Thin Film as a New Anode Material for Lithium-Ion Batteries," Appl. Surf. Sci., 256, 2447-2452(2010). https://doi.org/10.1016/j.apsusc.2009.10.085
  14. Zhang, J., Tu, J.-P., Xia, X.-H., Wang, X.-L. and Gu, C.-D., "Hydrothermally Synthesized $WO_3$ Nanowire Arrays with Highly Improved Electrochromic Performance," J. Mater. Chem., 21, 5492-5498 (2011). https://doi.org/10.1039/c0jm04361c
  15. Jung, H., Sunwoo, C. and Kim, D.-H., "Preparation of $WO_3$ Films by CVD and their Application in Electrochromic Devices," Korean Chem. Eng. Res., 49, 405-410(2011). https://doi.org/10.9713/kcer.2011.49.4.405
  16. Kalanur, S. S., Hwang, Y. J., Chae, S. Y. and Joo, O. S., "Facile Growth of Aligned $WO_3$ Nanorods on FTO Substrate for Enhanced Photoanodic Water Oxidation Activity," J. Mater. Chem. A, 1, 3479-3488(2013). https://doi.org/10.1039/c3ta01175e
  17. Samu, G. F., Pencz, K., Janaky, C. and Rajeshwar, K., "On the Electrochemical Synthesis and Charge Storage Properties of $WO_3$/Polyaniline Hybrid Nanostructures," J. Solid State Electrochem., 19, 2741-2751(2015). https://doi.org/10.1007/s10008-015-2820-0
  18. Janaky, C., Tacconi, N. R. d., Chanmanee, W. and Rajeshwar, K., "Electrodeposited Polyaniline in a Nanoporous $WO_3$ Matrix: An Organic/Inorganic Hybrid Exhibiting Both p- and n-Type Photoelectrochemical Activity," J. Phys. Chem. C, 116, 4234-4242 (2012). https://doi.org/10.1021/jp211698j
  19. Shang, M., Wang, W., Sun, S., Ren, J., Zhou, L. and Zhang, L., "Efficient Visible Light-Induced Photocatalytic Degradation of Contaminant by Spindle-like PANI/$BiVO_4$," J. Phys. Chem. C, 113, 20228-20233(2009). https://doi.org/10.1021/jp9067729
  20. Zhang, J., Tu, J.-P., Zhang, D., Qiao, Y.-Q., Xia, X.-H., Wang, X.-L. and Gu, C.-D., "Multicolor Electrochromic Polyaniline-$WO_3$ Hybrid Thin Films: One-Pot Molecular Assembling Synthesis," J. Mater. Chem., 21, 17316-17324(2011). https://doi.org/10.1039/c1jm13069b
  21. Vonlanthen, D., Lazarev, P., See, K. A., Wudl, F. and Heeger, A. J., "A Stable Polyaniline-Benzoquinone-Hydroquinone Supercapacitor," Adv. Mater., 26, 5095-5100(2014). https://doi.org/10.1002/adma.201400966