DOI QR코드

DOI QR Code

메틸렌블루와 바나듐을 활물질로 활용한 수계 유기 레독스 흐름 전지의 성능 평가

Performance Evaluation of Aqueous Organic Redox Flow Battery Using Methylene Blue and Vanadium Redox Couple

  • 이원미 (서울과학기술대학교 에너지환경대학원) ;
  • 권용재 (서울과학기술대학교 에너지환경대학원)
  • Lee, Wonmi (Graduate school of Energy and Environment, Seoul National University of Science and Technology) ;
  • Kwon, Yongchai (Graduate school of Energy and Environment, Seoul National University of Science and Technology)
  • 투고 : 2018.08.30
  • 심사 : 2018.10.12
  • 발행 : 2018.12.01

초록

본 연구에서는 염료 물질 중 하나인 메틸렌 블루(methylene blue)를 수계 레독스 흐름 전지의 활물질로 처음으로 도입하였다. Methylene blue의 레독스 전위는 pH가 높아짐에 따라 음의 방향으로 이동하는 것을 확인할 수 있었다. 이 methylene blue를 음극 활물질로 활용하고, 양극 활물질로는 바나듐(vanadium) 을 활용하여 산 전해질을 기반으로 셀성능 평가를 진행하였다. Methylene $blue/V^{4+}$ 레독스 조합의 산 전해질에 대한 셀 전압은 0.45 V로 낮으며, Methylene blue의 물에 대한 용해도 또한 0.12 M로 굉장히 낮다. 이에 따라 0.0015 M의 낮은 농도로 단전지 셀 성능을 평가하였으며, Nafion 212 멤브레인을 사용하여 0~0.8 V 컷-오프 전압으로 $1mA/cm^2$ 전류밀도 하에서 4 cycle에서 충방전 효율 96.67%, 전압효율 88.83%, 에너지효율 85.87%, 방전 용량($0.0500Ah{\cdot}L^{-1}$)의 성능을 보였으며, 낮은 방전용량은 활물질의 낮은 농도에 의한 것이므로 활물질인 메틸렌 블루의 농도를 0.1 M로, 전류밀도는 $10mA/cm^2$로 더 높였을 때 4 cycle에서 CE 99%, VE 85%, EE 85%의 효율로 더 높은 방전 용량($3.8122Ah{\cdot}L^{-1}$)을 도출함을 확인할 수 있었다.

In this study, methylene blue which is one of dye materials was introduced as active material for aqueous redox flow battery. The redox potential of methylene blue was shifted to negative direction as pH increased. The full-cell performance was evaluated by using methylene blue as the negative active material and vanadium as the positive active material with acid supporting electrolytes. The cell voltage of methylene $blue/V^{4+}$ is very low (0.45 V). In addition, the maximum solubility of methylene blue in water is only 0.12 M. Therefore, the cell test was performed with very low concentration (0.0015 M methylene blue, $0.15M\;V^{4+}$) at first time. Cut-off voltage range was 0 to 0.8 V and $1mA{\cdot}cm^{-2}$ current density was adopted during cycling. As a result, current efficiency (CE) was 99.67%, voltage efficiency (VE), 88.83% and energy efficiency (EE) was 85.87% and discharge capacity was ($0.0500Ah{\cdot}L^{-1}$) at 4 cycle. In addition, the cell test was performed with increased concentration (0.1 M methylene blue, $0.15M\;V^{4+}$) with $10mA{\cdot}cm^{-2}$ current density, leading to higher discharge capacity ($3.8122Ah{\cdot}L^{-1}$) with similar efficiency (CE=99%, VE=85%, EE=85% at 4 cycle).

키워드

HHGHHL_2018_v56n6_890_f0001.png 이미지

Fig. 1. Scheme of redox reaction of (a) Methylene blue and (b) V4+/V5+.

HHGHHL_2018_v56n6_890_f0002.png 이미지

Fig. 2. Cyclic voltammetry results of 0.0015 M methylene blue in different pH supporting electrolytes at scan rate 100 mV·s-1.

HHGHHL_2018_v56n6_890_f0003.png 이미지

Fig. 3. Cyclic voltammetry results of 0.0015 M methylene blue and V4+/V5+ redox reactions at scan rate 100 mV·s-1.

HHGHHL_2018_v56n6_890_f0004.png 이미지

Fig. 4. (a) Charge-discharge graphs, (b) efficiency graphs and (c) discharge capacity and SOC versus cycle number graphs of 0.0015 M methylene blue/0.15 M vanadium RFB single cell tests in 2 M H2SO4 with 1 mA·cm-2 current density at 0~0.8 V cutoff voltage.

HHGHHL_2018_v56n6_890_f0005.png 이미지

Fig. 5. (a) Charge-discharge graphs, (b) efficiency graphs and (c) discharge capacity and SOC versus cycle number graphs of 0.0015 M methylene blue/0.15 M vanadium RFB single cell tests in 2 M HCl with 1 mA·cm-2 current density at 0~0.8 V cut-off voltage.

HHGHHL_2018_v56n6_890_f0006.png 이미지

Fig. 6. (a) Charge-discharge graphs, (b) efficiency graphs and (c) discharge capacity and SOC versus cycle number graphs of 0.1 M methylene blue/0.15 M vanadium RFB single cell tests in 2M H2SO4 with 10 mA·cm-2 current density at 0~0.8 V cut-off voltage.

참고문헌

  1. Noh, C., Moon, S., Chung, Y. and Kwon, Y., "Chelating Functional Group Attached to Carbon Nanotubes Prepared for Performance Enhancement of Vanadium Redox Flow Battery," J. Mater. Chem. A, 5, 21334-21342(2017). https://doi.org/10.1039/C7TA06672D
  2. Chakrabarti, M. H., Dryfe, R. A. W. and Roberts, E. P. L., "Evaluation of Electrolytes for Redox Flow Battery Applications," Electrochim. Acta, 52, 2189-2195(2007). https://doi.org/10.1016/j.electacta.2006.08.052
  3. Noh, C., Lee, C. S., Chi, W. S., Chung, Y., Kim, J. H. and Kwon, Y., "Vanadium Redox Flow Battery Using Electrocatalyst Decorated with Nitrogen-Doped Carbon Nanotubes Derived from Metal-Organic Frameworks," J. Electrochem. Soc., 165, A1388-A1399 (2018). https://doi.org/10.1149/2.0621807jes
  4. Wang, W., Luo, Q., Li, B., Wei, X., Li, L. and Yang, Z., "Recent Progress in Redox Flow Battery Research and Development," Adv. Funct. Mater., 23, 970-986(2013). https://doi.org/10.1002/adfm.201200694
  5. Lopez-Atalaya, M., Codina, G., Perez, J. R., Vazquez, J. L. and Aldaz, A., "Optimization Studies on a Fe/Cr Redox Flow Battery," J. Power Sources, 39, 147-154(1992). https://doi.org/10.1016/0378-7753(92)80133-V
  6. Jeon, J. D., Yang, H. S., Shim, J., Kim, H. S. and Yang, J. H., "Dual Function of Quaternary Ammonium in Zn/Br Redox Flow Battery: Capturing the Bromine and Lowering the Charge Transfer Resistance," Electrochim. Acta, 127, 397-402(2014). https://doi.org/10.1016/j.electacta.2014.02.073
  7. Jung, M., Lee, W., Krishnan, N. N., Kim, S., Gupta, G., Komsiyska, L., Harms, C., Kwon, Y. and Henkensmeier, D., "Porous-Nafion/PBI Composite Membranes and Nafion/PBI Blend Membranes for Vanadium Redox Flow Batteries," Appl. Surf. Sci., 450, 301-311(2018). https://doi.org/10.1016/j.apsusc.2018.04.198
  8. Noh, C., Jung, M., Henkensmeier, D., Nam, S. W. and Kwon, Y., "Vanadium Redox Flow Batteries Using meta-Polybenzimidazole-Based Membranes of Different Thicknesses, " ACS Appl. Mater. Interfaces, 9, 36799-36809(2017). https://doi.org/10.1021/acsami.7b10598
  9. Kaneko, H., Nozaki, K., Wada, Y., Aoki, T., Negishi, A. and Kamimoto, M., "Vanadium Redox Reactions and Carbon Electrodes for Vanadium Redox Flow Battery," Electrochim. Acta, 36, 1191-1196(1991). https://doi.org/10.1016/0013-4686(91)85108-J
  10. Parasuraman, A., Lim, T. M., Menictas, C. and Skyllas-Kazacos, M., "Review of Material Research and Development for Vanadium Redox Flow Battery Applications," Electrochim. Acta, 101, 27-40(2013). https://doi.org/10.1016/j.electacta.2012.09.067
  11. Lee, W., Jo, C., Youk, S., Shin, H. Y., Lee, J., Chung, Y. and Kwon, Y., "Mesoporous Tungsten Oxynitride as Electrocatalyst for Promoting Redox Reactions of Vanadium Redox Couple and Performance of Vanadium Redox Flow Battery," Appl. Surf. Sci., 429, 187-195(2018). https://doi.org/10.1016/j.apsusc.2017.07.022
  12. Jung, H. Y., Cho, M. S., Sadhasivam, T., Kim, J. Y., Roh, S. H. and Kwon, Y., "High Ionic Selectivity of Low Permeable Organic Composite Membrane with Amphiphilic Polymer for Vanadium Redox Flow Batteries," Solid State Ion., 324, 69-76(2018). https://doi.org/10.1016/j.ssi.2018.06.009
  13. Struzynska-Piron, I., Jung, M., Maljusch, A., Conradi, O., Kim, S., Jang, J. H., Jang, Kim, H., Kwon, Y., Nam, S.-W. and Henkensmeier, D., "Imidazole Based Ionenes, Their Blends with PBI-OO and Applicability as Membrane in a Vanadium Redox Flow Battery," Eur. Polym. J., 96, 383-392(2017). https://doi.org/10.1016/j.eurpolymj.2017.09.031
  14. Jung, H. Y., Jeong, S. and Kwon, Y., "The Effects of Different Thick Sulfonated Poly(ether ether ketone) Membranes on Performance of Vanadium Redox Flow Battery," Electrochem. Soc., 163, A5090-A5096(2016). https://doi.org/10.1149/2.0121601jes
  15. Yang, B., Hoober-Burkhardt, L., Wang, F., Prakash, G. S. and Narayanan, S. R., "An Inexpensive Aqueous Flow Battery for Large-scale Electrical Energy Storage Based on Water-soluble Organic Redox Couples, " J. Electrochem. Soc., 161, A1371-A1380 (2014). https://doi.org/10.1149/2.1001409jes
  16. Lin, K., Gomez-Bombarelli, R., Beh, E. S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M. J. and Gordon, R. G., "A Redox-flow Battery with an Alloxazine-based Organic Electrolyte," Nature Energy, 1, 16102(2016). https://doi.org/10.1038/nenergy.2016.102
  17. Hu, B., DeBruler, C., Rhodes, Z. and Liu, T. L., "Long-cycling Aqueous Organic Redox Flow Battery (AORFB) Toward Sustainable and Safe Energy Storage," J. American Chem. Soc., 139, 1207-1214(2017). https://doi.org/10.1021/jacs.6b10984
  18. Christwardana, M., Ji, J., Chung, Y. and Kwon, Y., "Highly Sensitive Glucose Biosensor Using New Glucose Oxidase Based Biocatalyst," Korean J. Chem. Eng., 34, 2916-2921(2017). https://doi.org/10.1007/s11814-017-0224-9
  19. Beh, E. S., De Porcellinis, D., Gracia, R. L., Xia, K. T., Gordon, R. G. and Aziz, M. J., "A Neutral pH Aqueous Organic-organometallic Redox Flow Battery with Extremely High Capacity Retention," ACS Energy Lett., 2, 639-644(2017). https://doi.org/10.1021/acsenergylett.7b00019
  20. Christwardana, M., Chung, Y. and Kwon, Y., "A Correlation of Results Measured by Cyclic Voltammogram and Impedance Spectroscopy in Glucose Oxidase Based Biocatalysts," Korean J. Chem. Eng., 34, 3009-3016(2017). https://doi.org/10.1007/s11814-017-0213-z
  21. Karyakin, A. A., Strakhova, A. K., Karyakina, E. E., Varfolomeyev, S. D. and Yatslmirsky, A. K., "The Electrochemical Polymerization of Methylene Blue and Bioelectrochemical Activity of the Resulting Film," Synth. Met., 60, 289-292(1993). https://doi.org/10.1016/0379-6779(93)91294-C
  22. Wang, W., Nie, Z., Chen, B., Chen, F., Luo, Q., Wei, X., Xia, G.-G., Skyllas-Kazacos, M., Li, L. and Yang, Z., "A New Fe/V Redox Flow Battery Using a Sulfuric/chloric Mixed-Acid Supporting Electrolyte," Adv. Energy Mater., 2, 487-493(2012). https://doi.org/10.1002/aenm.201100527

피인용 문헌

  1. Phenothiazine‐Based Organic Catholyte for High‐Capacity and Long‐Life Aqueous Redox Flow Batteries vol.31, pp.24, 2019, https://doi.org/10.1002/adma.201901052
  2. Porous polybenzimidazole membranes with positive charges enable an excellent anti-fouling ability for vanadium-methylene blue flow battery vol.68, pp.None, 2018, https://doi.org/10.1016/j.jechem.2021.12.011