DOI QR코드

DOI QR Code

Link Label-Based Optimal Path Algorithm Considering Station Transfer Penalty - Focusing on A Smart Card Based Railway Network -

역사환승페널티를 고려한 링크표지기반 최적경로탐색 - 교통카드기반 철도네트워크를 중심으로 -

  • Received : 2018.10.08
  • Accepted : 2018.11.06
  • Published : 2018.12.01

Abstract

Station transfers for smart card based railway networks refer to transfer pedestrian movements that occur at the origin and destination nodes rather than at a middle station. To calculate the optimum path for the railway network, a penalty for transfer pedestrian movement must be included in addition to the cost of within-car transit time. However, the existing link label-based path searching method is constructed so that the station transfer penalty between two links is detected. As such, station transfer penalties that appear at the origin and destination stations are not adequately reflected, limiting the effectiveness of the model. A ghost node may be introduced to expand the network, to make up for the station transfer penalty, but has a pitfall in that the link label-based path algorithm will not hold up effectively. This research proposes an optimal path search algorithm to reflect station transfer penalties without resorting to enlargement of the existing network. To achieve this, a method for applying a directline transfer penalty by comparing Ticket Gate ID and the line of the link is proposed.

교통카드기반 도시철도네트워크에서 역사환승은 중간환승역이 아닌 출발역과 도착역의 노드에서 발생하는 환승보행이동을 의미한다. 철도네트워크에서 최적의 경로를 탐색하기 위해서는 차내통행시간 이외에 환승보행이동에 대한 페널티를 반영하는 방안이 요구된다. 그러나 기존 링크표지기반 경로탐색기법은 링크와 링크의 사이에서 나타나는 환승페널티가 인식되도록 설계되었다. 따라서 출발역과 도착역에서 나타나는 역사환승페널티를 반영하지 못하는 한계가 발생한다. 역사환승페널티를 반영하기 위해 가상링크를 도입하여 네트워크를 확장하는 방안이 있으나 링크표지기반알고리즘을 효과적으로 유지하지 못하는 단점이 발생된다. 본 연구는 역사환승페널티를 반영하기 위하여 네트워크확장없이 최적경로를 탐색하는 알고리즘을 제안한다. 이를 위해 단말기ID와 링크의 노선을 비교하여 노선환승페널티를 직접 적용하는 방안을 제안한다.

Keywords

TMHHC2_2018_v38n6_941_f0001.png 이미지

Fig. 1. Three Lines’ Ticket Gate ID of ‘Express Bus Terminal’ Station

TMHHC2_2018_v38n6_941_f0002.png 이미지

Fig. 2. Link Expression Centering to ‘Express Bus Terminal’ Station

TMHHC2_2018_v38n6_941_f0003.png 이미지

Fig. 3. Link Label-Based Railway Station Network

TMHHC2_2018_v38n6_941_f0004.png 이미지

Fig. 4. Network Expansion of BigNode

TMHHC2_2018_v38n6_941_f0005.png 이미지

Fig. 5. Links Connected to Departure and Arrival BigNode

TMHHC2_2018_v38n6_941_f0006.png 이미지

Fig. 6. Seoul Metropolitan Railway Network

TMHHC2_2018_v38n6_941_f0007.png 이미지

Fig. 7. Case Study Process using Smart Card Data

Table 1. Smart Card Ticket Gate ID

TMHHC2_2018_v38n6_941_t0001.png 이미지

Table 2. Links Connected by Two BigNodes

TMHHC2_2018_v38n6_941_t0002.png 이미지

Table 3. Transfer Penalty Between Lines (Tab)

TMHHC2_2018_v38n6_941_t0003.png 이미지

Table 4. Headway of Railway Line (Hb)

TMHHC2_2018_v38n6_941_t0004.png 이미지

Table 5. Transfer Station Ration to Demand between r and s

TMHHC2_2018_v38n6_941_t0005.png 이미지

Table 6. Highest Frequency of Non Station Transfer (f-- )

TMHHC2_2018_v38n6_941_t0006.png 이미지

Table 7. Highest Frequency of Departure Station Transfer (fr-)

TMHHC2_2018_v38n6_941_t0007.png 이미지

Table 8. Highest Frequency of Arrival Station Transfer (f-s)

TMHHC2_2018_v38n6_941_t0008.png 이미지

Table 9. Highest Frequency of Departure & Arrival Station Transfer (frs)

TMHHC2_2018_v38n6_941_t0009.png 이미지

Table 10. Change of Number of Transfer Considering All r-s Pairs

TMHHC2_2018_v38n6_941_t0010.png 이미지

References

  1. Choi, K. C. (1995). "Network representation schemes for U-TURN and implementation in the vine-based dijkstra shortest path algorithm." Journal of Korean Society of Transportation, Vol. 13, No. 3, pp. 35-52 (in Korean).
  2. Gabriel, S. and Bernstein, D. (1997). "The traffic equilibrium problem with nonadditive path costs." Transportation Science, Vol. 20, No. 5, pp. 337-348.
  3. Kirby, R. F. and Potts, R. B. (1969). "The minimum route problem for networks with turn penalties and prohibitions." Transportation Research 3, pp. 397-408. https://doi.org/10.1016/S0041-1647(69)80022-5
  4. Lee, M. Y. (2004). Transportation network models and algorithms considering directional delay and prohibitions for intersection movement. Ph.D. Thesis, University of Wisconsin at Madison.
  5. Lee, M. Y. (2017). "Transportation card based optimal m-similar paths searching for estimating passengers' route choice in seoul metropolitan railway network." The Journal of The Korea Institute of Intelligent Transport Systems, Vol. 16, No. 2, pp. 1-12. https://doi.org/10.12815/kits.2017.16.2.01
  6. Namgeung, S., Rho, J. H. and Choi, J. J. (1998). "Development of the tree-based path-finding in urban transportation networks." Mathl. Comput. Modelling, Vol. 27, No. 9-11, pp. 51-65.
  7. Shin, S. I. and Baek, N. C. (2016). "A logit type of public transit trip assignment model considering stepwise transfer coefficients." Journal of Korean Society of Transportation, Vol. 34, No. 6, pp. 570-579 (in Korean). https://doi.org/10.7470/jkst.2016.34.6.570