DOI QR코드

DOI QR Code

Differences of Lumbar Muscle Activity and Oxygen Consumption According to Bike Saddle Height

자전거 안장높이에 따른 요추부 근 활성도 및 산소 소모량 차이

  • Choi, Wonjae (Institute of SMART Rehabilitation, Sahmyook University) ;
  • Lee, Choongho (Dept. of Physical Therapy, Graduate School of Sahmyook University) ;
  • Jung, Jihye (Dept. of Physical Therapy, Graduate School of Sahmyook University) ;
  • Lee, Seungwon (Dept. of Physical Therapy, Sahmyook University)
  • 최원재 (삼육대학교 SMART 재활연구소) ;
  • 이충호 (삼육대학교 대학원 물리치료학과) ;
  • 정지혜 (삼육대학교 대학원 물리치료학과) ;
  • 이승원 (삼육대학교 물리치료학과)
  • Received : 2018.07.12
  • Accepted : 2018.11.20
  • Published : 2018.11.28

Abstract

The purpose of this study was to investigate the differences of lumbar muscle activity (LMA) and oxygen consumption (OC) according to bike saddle height in healthy young men. Twenty-two subjects without musculoskeletal disorders participated in this study. Subjects performed 3 min cycling at 3 different saddle heights with 10 minutes of resting time respectively. Surface EMG was used to assess muscle activity in LMA, and OC was assessed by potable gas analyzer. In the result, there was a statistically significant difference in internal oblique abdominis activity (p<0.05), and the OC was significantly higher in high saddle height than the optimal and the low position of the saddle (p<0.05). This study suggest that changes in saddle height affected internal oblique abdominis activity and OC in subjects, however, saddle height does not have much effect on lumbar stabilizer muscle.

본 연구의 목적은 자전거 안장 높이에 따라 요추부 근 활성도와 산소 소모량의 차이를 알아보기 위해 실시하였다. 근골계 장애가 없는 22명의 건강한 남자가 본 연구에 참여하였다. 대상자들은 3가지 다른 안장 높이로 3분씩 자전거를 탔으며 각 조건 별로 10분의 휴식시간을 가졌다. 표면 근전도는 요추부 근 활성도를 측정하기 위해 사용되었고 산소 소모량은 휴대용 가스 분석기를 사용하여 평가되었다. 연구 결과 내복사근만 유의한 차이가 있었고(p<0.05), 산소 소모량은 높은 안장 높이가 최적 안장 높이와 낮은 안장 높이 보다 유의하게 높게 나타났다(p<0.05). 본 연구는 안장 높이가 건강한 남성의 내복사근 활성도와 산소 소모량에 영향을 미친다고 제안하지만 안장 높이는 요추 안정화 근육에 영향을 미치지는 않았다.

Keywords

Table 1. Location of EMG electrodes

OHHGBW_2018_v9n11_363_t0001.png 이미지

Table 2. General characteristics of participants

OHHGBW_2018_v9n11_363_t0002.png 이미지

Table 3. Differences of muscle activity according to seat height

OHHGBW_2018_v9n11_363_t0003.png 이미지

Table 4. Differences of oxygen consumption according to seat height

OHHGBW_2018_v9n11_363_t0004.png 이미지

References

  1. S. Jäppinen, T. Toivonen & M. Salonen. (2013). Modelling the potential effect of shared bicycles on public transport travel times in Greater Helsinki: An open data approach. Applied Geography, 43(0), 13-24. https://doi.org/10.1016/j.apgeog.2013.05.010
  2. S.-W. Hsiao & Y.-C. Ko. (2013). A study on bicycle appearance preference by using FCE and FAHP. International Journal of Industrial Ergonomics, 43(4), 264-273. https://doi.org/10.1016/j.ergon.2013.04.003
  3. V. Balasubramanian & S. Jayaraman. (2009). Surface EMG based muscle activity analysis for aerobic cyclist. J Bodyw Mov Ther, 13(1), 34-42. https://doi.org/10.1016/j.jbmt.2008.03.002
  4. B. R. Yoo & S. K. Hwang. (1996). The effects of bicycle exercise on physical fitness and blood components in the middle aged women. Korean Journal of Physical Education, 35(2), 2167-2175.
  5. H. H. Christiaans & A. Bremner. (1998). Comfort on bicycles and the validity of a commercial bicycle fitting system. Appl Ergon, 29(3), 201-211. https://doi.org/10.1016/S0003-6870(97)00052-5
  6. W. S. Han. (2013). Sport science: Bike fitting and sport science. Sport Science. 124, 46-55.
  7. W. Van Hoof, K. Volkaerts, K. O'Sullivan, S. Verschueren & W. Dankaerts. (2012). Comparing lower lumbar kinematics in cyclists with low back pain (flexion pattern) versus asymptomatic controls--field study using a wireless posture monitoring system. Man Ther, 17(4), 312-317. https://doi.org/10.1016/j.math.2012.02.012
  8. J. M. Muyor, P. A. Lopez-Minarro & F. Alacid. (2013). Comparison of sagittal lumbar curvature between elite cyclists and non-athletes. Science & Sports, 28(6), e167-e173. https://doi.org/10.1016/j.scispo.2013.04.003
  9. J. Srinivasan & V. Balasubramanian. (2007). Low back pain and muscle fatigue due to road cycling-An sEMG study. J Bodyw Mov Ther, 11(3), 260-266. https://doi.org/10.1016/j.jbmt.2006.08.009
  10. M. M. Panjabi. (1992). The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord, 5(4), 390-396. https://doi.org/10.1097/00002517-199212000-00002
  11. N. P. Reeves, K. S. Narendra & J. Cholewicki. (2007). Spine stability: the six blind men and the elephant. Clin Biomech (Bristol, Avon), 22(3), 266-274. https://doi.org/10.1016/j.clinbiomech.2006.11.011
  12. J. H. van Dieen, I. Kingma & P. van der Bug. (2003). Evidence for a role of antagonistic cocontraction in controlling trunk stiffness during lifting. J Biomech, 36(12), 1829-1836. https://doi.org/10.1016/S0021-9290(03)00227-6
  13. R. R. Bini, P. A. Hume & A. E. Kilding. (2014). Saddle height effects on pedal forces, joint mechanical work and kinematics of cyclists and triathletes. Eur J Sport Sci, 14(1), 44-52. https://doi.org/10.1080/17461391.2012.725105
  14. V. Ferrer-Roca, R. Bescos, A. Roig, P. Galilea, O. Valero & J. Garcia-Lopez. (2014). Acute Effects of Small Changes in Bicycle Saddle Height on Gross Efficiency and Lower Limb Kinematics. Journal of Strength and Conditioning Research, 28(3), 784-791. https://doi.org/10.1519/JSC.0b013e3182a1f1a9
  15. V. Ferrer-Roca, R. Bescos, A. Roig, P. Galilea, O. Valero & J. Garcia-Lopez. (2014). Acute effects of small changes in bicycle saddle height on gross efficiency and lower limb kinematics. J Strength Cond Res, 28(3), 784-791. https://doi.org/10.1519/JSC.0b013e3182a1f1a9
  16. W. P. Liemohn, T. A. Baumgartner & L. H. Gagnon. (2005). Measuring core stability. J Strength Cond Res, 19(3), 583-586. https://doi.org/10.1519/00124278-200508000-00016
  17. J. Borghuis, A. L. Hof & K. A. Lemmink. (2008). The importance of sensory-motor control in providing core stability: implications for measurement and training. Sports Med, 38(11), 893-916. https://doi.org/10.2165/00007256-200838110-00002
  18. J. Cholewicki & S. M. McGill. (1996). Mechanical stability of the in vivo lumbar spine: implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon), 11(1), 1-15. https://doi.org/10.1016/0268-0033(95)00035-6
  19. M. van der Hulst, M. M. Vollenbroek-Hutten, J. S. Rietman & H. J. Hermens. (2010). Lumbar and abdominal muscle activity during walking in subjects with chronic low back pain: Support of the "guarding" hypothesis? Journal of Electromyography and Kinesiology, 20(1), 31-38. https://doi.org/10.1016/j.jelekin.2009.03.009
  20. A. F. Burnett, M. W. Cornelius, W. Dankaerts & B. O'Sullivan P. (2004). Spinal kinematics and trunk muscle activity in cyclists: a comparison between healthy controls and non-specific chronic low back pain subjects-a pilot investigation. Man Ther, 9(4), 211-219. https://doi.org/10.1016/j.math.2004.06.002
  21. A. Burnett, P. O'Sullivan, L. Ankarberg, M. Gooding, R. Nelis, F. Offermann & J. Persson. (2008). Lower lumbar spine axial rotation is reduced in end-range sagittal postures when compared to a neutral spine posture. Man Ther, 13(4), 300-306. https://doi.org/10.1016/j.math.2007.01.016
  22. J. D. Drake & J. P. Callaghan. (2008). Do flexion/extension postures affect the in vivo passive lumbar spine response to applied axial twist moments? Clin Biomech (Bristol, Avon), 23(5), 510-519. https://doi.org/10.1016/j.clinbiomech.2007.12.005
  23. J. S. Little & P. S. Khalsa. (2005). Human lumbar spine creep during cyclic and static flexion: creep rate, biomechanics, and facet joint capsule strain. Ann Biomed Eng, 33(3), 391-401. https://doi.org/10.1007/s10439-005-1742-x
  24. C. J. Colloca & R. N. Hinrichs. (2005). The biomechanical and clinical significance of the lumbar erector spinae flexion-relaxation phenomenon: a review of literature. J Manipulative Physiol Ther, 28(8), 623-631. https://doi.org/10.1016/j.jmpt.2005.08.005
  25. P. O'Sullivan, W. Dankaerts, A. Burnett, D. Chen, R. Booth, C. Carlsen & A. Schultz. (2006). Evaluation of the flexion relaxation phenomenon of the trunk muscles in sitting. Spine (Phila Pa 1976), 31(17), 2009-2016. https://doi.org/10.1097/01.brs.0000228845.27561.e0
  26. J. S. Choi, D. W. Kang, J. W. Seo, J. H. Bae & G. R. Tack. (2012). Effects of increased saddle height on length and activity pattern of vastus lateralis and biceps femoris muscle. Korean Society for Sociology of Sport, 22(4), 413-419.
  27. E. A. Andersson, H. Grundstrom & A. Thorstensson. (2002). Diverging intramuscular activity patterns in back and abdominal muscles during trunk rotation. Spine (Phila Pa 1976), 27(6), E152-160. https://doi.org/10.1097/00007632-200203150-00014
  28. W. W. Peveler & J. M. Green. (2011). Effects of saddle height on economy and anaerobic power in well-trained cyclists. J Strength Cond Res, 25(3), 629-633. https://doi.org/10.1519/JSC.0b013e3181d09e60