Fig. 1. EOG measuring device
Fig. 2. Location of electrodes.
Fig. 3. Experimental Procedure
Fig. 4. Overal Structure of Algorithm
Fig. 5. Median accuracy across subjects as increasing the number of classes
Table 1. Branches of constraint slope for DPW
Table 2. Confusion matrix for eye-movement recognitions
Table 3. Recognition accuracy of directional eye movements
Table 4. Recognition results of eye-written characters. S, B, E denote space, back space, and enter symbols respectively.
Table 5. Recognition accuracy according to subjects
Table 6. Recognition accuracy of eye-writing
참고문헌
- W. D. Chang, H.-S. Cha & C.-H. Im. (2016). Removing the Interdependency between Horizontal and Vertical Eye-movement Components in Electrooculograms. Sensors, 16(2), 227. https://doi.org/10.3390/s16020227
- C. H. Morimoto & M. R. M. Mimica. (2005). Eye Gaze Tracking Techniques for Interactive Applications. Computer Vision and Image Understanding. 98, 4-24. https://doi.org/10.1016/j.cviu.2004.07.010
- A. Bulling, D. Roggen & G. Troster. (2009). Wearable EOG goggles: Seamless Sensing and Context-awareness in Everyday Environments, Journal of Ambient Intelligent Smart Environent. 1, 157-171.
- W. D. Chang, H. S. Cha, D. Y. Kim, S. H. Kim & C. H. Im. (2017). Development of an Electrooculogram-based Eye-computer Interface for Communication of Indiv-id-als with Amyotrophic Lateral Sclerosis, Journal of Neuroengineering and Rehabilitation. 14(1), Article ID: 89.
- F. Fang & T.Shinozaki. (2018). Electrooculography-based Continuous Eye-writing Recognition System for Efficient Assistive Communication Systems. PLoS One, 13(2), Article ID: e0192684.
- S. Benedetto, M. Pedrotti, L. Minin, T. Baccino, A. Re & R. Montanari. (2011). Driver Workload and Eye Blink Duration, Transportation Research Part F, 14, 199-208. https://doi.org/10.1016/j.trf.2010.12.001
- B. D. Yetton, M. Niknazar, K.A. Duggan, E.A. McDevitt, L.N. Whitehurst, N. Sattari & S.C. Mednick. (2015). Automatic Detection of Rapid Eye Movements (REMs): A Machine Learning Spproach, Journal of Neuroscience Methods, 259, 72-82.
- R. Barea, L. Boquete, M. Mazo, E. Lopez. (2002). Wheelchair Guidance Strategies using EOG, Journal of Intelligent and Robotic Systems: Theory and Applications, 34(3), 279-299. https://doi.org/10.1023/A:1016359503796
- J. Z. Tsai, C. K. Lee, C. M. Wu, J. J. Wu , K. P. Kao. (2008). A Feasibility Study of an Eye-writing System Based on Electro-oculography. Journal of Medical and Biological Engineering, 28, 39-46.
- K. R. Lee, W. D. Chang, S. Kim, C. H. Im. (2017). Real-Time ‘Eye-Writing' Recognition using Electrooculogram (EOG). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(1), 37-48. https://doi.org/10.1109/TNSRE.2016.2542524
- D. Borghetti, A. Bruni, M. Fabbrini, L. Murri, F. Sartucci. (2007). A Low-Cost Interface for Control of Computer Functions by Means of Eye Movements, Computers in Biology and Medicine, 37(12), 1765-1770. https://doi.org/10.1016/j.compbiomed.2007.05.003
- W.-D. Chang and J. Shin. (2009). Dynamic Positional Warping: Dynamic Time Warping for Online Handwriting. International Journal of Pattern Recognition and Artificial Intelligence, 23(5), 967-986. https://doi.org/10.1142/S0218001409007454
- W.-D. Chang and J. Shin. (2008) DPW Approach for Random Forgery Problem in Online Handwritten Signature Verification. The 4th International Conference on Networked Computing and Advanced Information Management, pp. 347-352. Gyeongju: IEEE.
- K. Yamagishi, J. Hori, M. Miyakawa. (2006). Development of EOG-based communication system controlled by eight-directional eye movements. International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2574-2577. New York: IEEE.
- S. L. Wu, L. De Liao, S. W. Lu, W. L. Jiang, S.A. Chen, C.T. Lin. (2013). Controlling a human-computer interface system with a novel classification method that uses electrooculography signals, IEEE Transactions on Biomedical Engineering, 60, 2133-2141. https://doi.org/10.1109/TBME.2013.2248154
- A. Banerjee, S. Datta, M. Pal, A. Konar, D.N. Tibarewala, R. Janarthanan. (2013). Classifying Electrooculogram to Detect Directional Eye Movements, Procedia Technology, 10, 67-75. https://doi.org/10.1016/j.protcy.2013.12.338
- E. Ianez, J.M. Azorin, C. Perez-Vidal. (2013). Using Eye Movement to Control a Computer: A Design for a Lightweight Electro-Oculogram Electrode Array and Computer Interface, PLoS One, 8(7), Article ID: e67099.
- H.-J. Kim. (2017). A Review Study of Biosensors applicable to Wellness Wear, Journal of Digital Convergence, 15(11), 231-243. https://doi.org/10.14400/JDC.2017.15.11.231
- Y.-S. Jeong. (2017). Data Storage and Security Model for Mobile Healthcare Service based on IoT, Journal of Digital Convergence, 15(3), 187-193. https://doi.org/10.14400/JDC.2017.15.3.187
- M.-J. Lee, H.-K. Kang. (2017). Effects of Mobile based-Healthcare Service using Human Coaching to the Self-care of Diabetes. Journal of Convergence for Information Technology, 7(4), 83-89. https://doi.org/10.22156/CS4SMB.2017.7.4.083
- M.-G. Cho. (2017). Smart Elderly-care System using Smart-phone. Journal of Convergence for Information Technology, 7(5), 129-135. https://doi.org/10.14801/jaitc.2017.7.2.129