DOI QR코드

DOI QR Code

전송효율성 극대화를 위한 DTN 성능 가속 및 병목구간 패킷손실 최소화 방안

Method on DTN Performance Acceleration and Packet Loss Minimization for Transfer Efficiency Maximizing

  • 박종선 (한국과학기술정보연구원) ;
  • 노민기 (한국과학기술정보연구원)
  • Park, Jong-Seon (Korea Institute of Science and Technology Information) ;
  • Noh, Min-Ki (Korea Institute of Science and Technology Information)
  • 투고 : 2018.09.11
  • 심사 : 2018.11.20
  • 발행 : 2018.11.28

초록

Science DMZ는 종단간 전송효율성 극대화를 위해 전용네트워크, DTN, 최소한의 보안정책과 같은 복합적인 요소를 고려한 네트워크 구조이다. 그리고 Science DMZ의 고대역폭의 전용네트워크를 충분히 활용하기 위해서는 DTN 튜닝이 필수적인 요소이다. 아울러 네트워크 병목구간으로 인한 패킷손실을 최소화하기 위해 네트워크 시스템의 튜닝이 병행적으로 수행되어야 한다. 본 논문에서는 Science DMZ 네트워크 구조에서 전송효율성 극대화를 위한 데이터 전송 노드 및 네트워크 시스템 튜닝 방안에 대해 제안한다. 국가과학기술연구망을 이용한 성능측정결과 DTN 튜닝 후 네트워크 성능이 튜닝을 하지 않을 것과 비교해 180% 성능향상을 보였다. 아울러 shaping 정책을 적용한 네트워크 시스템 튜닝 후 성능측정결과 손실 없이 9.4Gb/s의 성능을 보였다.

Science DMZ is a network architecture that considers complicated network components such as dedicated network, DTN, and minimum security policy to maximize transfer efficiency. And DTN tuning is an essential component to take full advantage of Science DMZ's available bandwidth. In addition, tuning of network system should be performed concurrently to minimize packet loss due to network bottleneck. In this paper, we propose a tuning method of data transfer node and network system for maximizing transfer efficiency in Science DMZ network architecture. As a result of the performance measurement using the KREONET, the network performance after the DTN tuning shows 180% improvement than that of existing method without DTN tuning. In addition, performance of 9.4Gb/s was shown without loss of performance measurement after tuning network system applying shaping policy.

키워드

OHHGBW_2018_v9n11_37_f0001.png 이미지

Fig. 1. Rate control according to traffic

OHHGBW_2018_v9n11_37_f0002.png 이미지

Fig. 2. Packet drop based on policing

OHHGBW_2018_v9n11_37_f0003.png 이미지

Fig. 3. Packet process delay based on shaping

OHHGBW_2018_v9n11_37_f0004.png 이미지

Fig. 4. Network environment to test

OHHGBW_2018_v9n11_37_f0005.png 이미지

Fig. 5. Throughput result according to DTN tuning

OHHGBW_2018_v9n11_37_f0006.png 이미지

Fig. 6. Throughput result based on network systemtuning

Table 1. DTN specification to test

OHHGBW_2018_v9n11_37_t0001.png 이미지

Table 2. The value of DTN tuning parameter

OHHGBW_2018_v9n11_37_t0002.png 이미지

참고문헌

  1. D. Kliazovich, F. Granelli, & D. Miorandi. (2008). Logarithmic window Increase for TCP westwood+ for improvement in high speed, long distance networks, Computer Networks, 52(12), 2395-2410. https://doi.org/10.1016/j.comnet.2008.04.018
  2. K. Mesmin, J. Mbyamm & J. Zhang. (2016). Improved implementation of TCP-vegas method in interchanges of satellite links. In Proceeding of International Conference on Computer Science and Network Technology.
  3. J. A. Arokkiam, W. Xiuchao, K. N. Brown, & C. J. Ireland. (2014). Experimental evaluation of TCP performance over 10Gb/s passive optical networks(XG-PON), in Proc. of GLOBECOM, 2223-2228.
  4. M. A. Alrshah & M. Othman. (2013). Performance evaluation of parallel TCP, and its impact on bandwidth utilization and fairness in high-BDP networks based on test-bed, in Proc. of 2013 Malaysia International Conference on Communications(MICC), 23-28.
  5. H. Park, S. Lee & Y. Shin. (2012). High-speed Transmission and Control Plan on High-definition Video File using Parallel TCP, in Proc. of ICACT'12, 1205-1208.
  6. M. Masirap, M. H. Amaran, Y. M. Yussoff, & H. Hashim. (2016). Evaluation of reliable UDP-based transport protocols for Internet of Things (IoT), in Proc. of ISCAIE, 200-205.
  7. Q. Liu, N. Rao & C. Q. Wu. (2016). Measurement-based performance profiles and dynamics of UDT over dedicated connections, in Proceeding of nternational Conference on Network Protocols.
  8. M. Meiss. (2009). Tsunami: a high-speed rate-controlled protocol for file transfer, www.evl.uic.edu/eric/atpTSUNAMI.pdf.
  9. E. Dart, L. Rotman & B. Tierney. (2013). The science DMZ: a network design pattern for data-intensive science, in Proc. of SC'13.
  10. I. Monga, E. Pouyoul & C. Guok. (2012). Software-Defined Networking for Big-Data Science - Architectural Models from Campus to the WAN, SC Companion: High Performance Computing, Networking Storage and Analysis.
  11. K. Jutawongcharoen, V. Varavithya, K. Lekdee, A. Chaichit & T. Sribuddee. (2016). The implementation of the UniNet's research DMZ, International Computer Science and Engineering Conference (ICSEC).
  12. I. Monga, E. Pouyoul, C. Guok. (2012) Software-Defined Networking for Big-Data Science - Architectural Models from Campus to the WAN, SC Companion: High Performance Computing, Networking Storage and Analysis.
  13. S. Kim & J. Yang. (2017). Work-in-progress: improving NVMe SSD I/O determinism with PCIe virtual channel, in Proceeding of International Conference on Compilers, Architectures and Synthesis For Embedded Systems.
  14. S. A. Valcourt. (2018). Major Factors in Science DMZ Deployment at Small Institutions, in Proc. of Practice and Experience on Advanced Research Computing.
  15. A. Abdelsalam, C. Roseti, F. Zampognaro & N. Patriciello. (2018). TCP Wave estimation of the optimal operating point using ACK trains, International Symposium on Networks, Computers and Communications.