DOI QR코드

DOI QR Code

The convergence study on patient position and exposure dose in abdominal CT examination using AEC

AEC를 적용한 복부 CT 검사 시 환자 자세와 피폭선량에 대한 융합 연구

  • Lee, Chun-Kyu (Department of Radiology, Chungnam National University Hospital) ;
  • Oh, Jeong-Sub (Department of Radiology, Chungnam National University Hospital) ;
  • Choi, Seon-Wook (Department of Radiology, Chungnam National University Hospital) ;
  • Kim, Gab-Jung (Department of Radiological Technology, Songho University) ;
  • Yoo, Se-Jong (Department of Radiological Technology, Daejeon Health Institute of Technology) ;
  • Jeon, Min-Cheol (Department of Radiological Technology, Daejeon Health Institute of Technology)
  • 이춘규 (충남대학교병원 영상의학과) ;
  • 오정섭 (충남대학교병원 영상의학과) ;
  • 최선욱 (충남대학교병원 영상의학과) ;
  • 김갑중 (송호대학교 방사선학과) ;
  • 유세종 (대전보건대학교 방사선학과) ;
  • 전민철 (대전보건대학교 방사선학과)
  • Received : 2018.10.08
  • Accepted : 2018.12.20
  • Published : 2018.12.28

Abstract

The purpose of this study was to evaluate the dose and image quality according to the rotation of the X-axis direction in the abdominal CT scan, and to find ways to reduce the exposure dose. The phantom was scanned by rotating in the X-axis direction at 0, 5, 10, and 15 degrees, respectively. The CTDIvol value, HU, noise, and signal-to-noise ratio were measured at each rotation. ANOVA analysis was performed using the SPSSWIN (ver 19.0) program. The radiation exposure dose was 5.44mGy, 5.70mGy, 5.98mGy and 6.38mGy at 0, 5, 10 and 15 degrees, respectively. HU, noise, and signal-to-noise ratio were not statistically significant. In the CT scan, if the patient is located in the isocenter of the gantry aperture and there is no rotation in the X-axis direction, the exposure dose is reduced.

본 연구는 복부 전산화단층촬영 검사에서 X-축 방향의 회전에 따른 선량, 영상의 화질을 평가하여 피폭선량의 감소 방안을 평가 하였다. 인체 모형 팬텀을 이용해 0도, 5도, 10도, 15도로 5도씩 X-축 방향으로 회전하여 scan을 하였다. 각각의 회전에서 CTDIvol 값, HU, 노이즈, 그리고 신호대잡음비를 측정하였다. SPSSWIN(ver 19.0) 프로그램을 사용하여 ANOVA 분석을 하였다. 회전에 따른 선량은 0도, 5도, 10도, 15도 회전에서 각각 5.44mGy, 5.70mGy, 5.98mGy, 6.38mGy 측정되었다. 회전에 따른 HU, 노이즈, 그리고 신호대잡음비는 통계적으로 유의한 차이가 없었다. 전산화단층촬영 검사에서 환자가 gantry aperture의 isocenter에 위치함과 동시에 X-축 방향으로 회전이 없다면 피폭 선량이 감소되어진다.

Keywords

OHHGBW_2018_v9n12_107_f0001.png 이미지

Fig. 2. This image show the topogram that were rotated in the X-axis direction at 0 degree (A), 5 degrees (B), 10 degrees (C), and 15 degrees (D) respectively.

OHHGBW_2018_v9n12_107_f0002.png 이미지

Fig. 3. The measurement of HU and NOISE according to angle of X-axis.

OHHGBW_2018_v9n12_107_f0003.png 이미지

Fig. 1. (A) The guideline to phantom for laser alignment in CT setup, (B) The laser alignment for Phantom's isocenter setup

Table 1. The scan parameter for abdomen CT

OHHGBW_2018_v9n12_107_t0001.png 이미지

Table 2. The CTDIvol value according to angle of phantom

OHHGBW_2018_v9n12_107_t0002.png 이미지

Table 3. The HU according to angle of phantom

OHHGBW_2018_v9n12_107_t0003.png 이미지

Table 4. The NOISE according to angle of phantom

OHHGBW_2018_v9n12_107_t0004.png 이미지

Table 5. The SNR according to angle of phantom

OHHGBW_2018_v9n12_107_t0005.png 이미지

References

  1. S. W. Choi & M. C. Jeon (2018). Awarness about Convergent Patient Safety Culture of Health Professional Working in Tertiary Hospital, Journal of The Korea Convergence Society, 9(1), 103-109. DOI : 10.15207/JKCS.2018.9.1.103
  2. C. G. Kim (2012). University Students'Awareness of Radiation, Journal of The Korea Convergence Society, 3(1), 27-34. https://doi.org/10.15207/JKCS.2012.3.1.027
  3. S. Y. Seo (2017). A study on the usefulness of a fusin model designed cloak shield to reduce the radiation exposure of the assistant during CT of severely injured patient. Journal of The Korea Convergence Society, 8(9), 211-216. DOI : 10.15207/JKCS.2017.8.9.211
  4. P. K. Cho (2015). Patient Radiation Exposure Dose in Computed Tomography. Journal of Korean Society of Radiology, 9(2), 109-115. DOI : 10.7742/jksr.2014.9.2.109
  5. MOHW (2018). http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&CONT_SEQ=344198&page=1
  6. MOHW (2017). http://www.mohw.go.kr/react/al/sal0301vw.jsp?PAR_MENU_ID=04&MENU_ID=0403&CONT_SEQ=343047&page=1
  7. H. J. Kim (2016). Analysis and Evaluation of Computed Tomography Dose Index (CTDI) of Pediatric Brain by Hospital Size. Journal Society of Radiology, 10(7), 503-510.
  8. K. B. Kim (2016). Image Evaluation for A Kind of Patient Fixing Pad in 64 Multi-Channel Detector Computed Tomograph. Journal of The Korea Convergence Society, 7(1), 89-95. DOI : 10.15207/JKCS.2016.7.1.089
  9. KFDA (2012). http://www.nifds.go.kr/ brd/m_15/view.do?seq=5331
  10. J. H. Lee (2013). Volume Change of Spiral Computed Tomography due to the Changed in the Parameters. Journal of the Korean Society of Radiology, 7(4), 307-311. DOI : 10.7742/jksr.2013.7.4.307
  11. Computed Tomography (2015). Seoul : DaiHaks Publishing, P34
  12. E. J. Kim & K. B. Lee (2017). Comparative study on optimal noise and radiation dose according to body weight versus body mass index (BMI) in abdomen pelvis CT. Korean Society of Computed Tomographic Technology, 19(2), 27-35
  13. M. Y. Lee & M. C. Kim & Y. C. Nam & D. K. Han (2010) Eva luation of Dose and Image Quality in Case of Discordance Between Isocenter of Gantry and Center in CT Ex amination. Korean Society of Computed Tomographic Technology, 12(1), 79-86.
  14. D. H. Lee & J. H. Kim & C. M. Dae & K. H. Min & S. R. Kim & P. K. Cho (2011). The Influence of Radiation Dose and Image Quality in Accordance with Bowtie Filter Size and Miscentering of X-Axis Direction. Korean Society of Computed Tomographic Technology, 13(2), 93-104.
  15. S. Y. Kang & J. H. Lee & H. C. Kim & Y. S. Lee (2017). The Useflness of CAD in low-dose chest CT When Isocenter is inconsistent. Korean Society of Computed Tomographic Technology, 19(2), 7-16.