Fig. 1. An example of decision tree.
Fig. 2. Rule refinement problem
Table 1. An example of a simple training data set
Table 2. Transform Table 1 into Extended Data Expression.
Table 3. The information derived from the Rules in Fig. 1.
References
- J.R.Quinlan. (1993) C4.5 : Program for Machine Learning, San Mateo, Calif, Morgan Kaufmann
- D. Kim, D. Lee, & W. D. Lee. (2006) Classifier using extended data expression, IEEE Mountain Workshop on Adaptive and Learning Systems, 154-159
- D. Kim, D. Seo, Y. Li, & W. D. Lee.(2008) A classifier capable of rule refinement, International Conference on Service Operations and Logistics, and Informatics, 168-173.
- J. M. Kong, D. H. Seo, & W. D. Lee.(2007) Rule refinement with extended data expression, Sixth International Conference on Machine Learning and Applications, 310-315
- D.H.Lee, C.Song, & W.D.Lee.(2007), A classifier capable of handling new attributes, IEEE Symposium on Computational Intelligence and Data Mining, 323-327.
- J. W. Friedman. (1977), A recursive partitioning decision rule for non parametric classification, IEEE Transaction on Computer Science, 404-408.
- R. J. Hathaway, & J. C. Bezdek. (2001) Fuzzy c-means clustering of incomplete data, IEEE Transaction on systems, Man and Cybernetics -part B: Cybernetics, 31(5).
- J. Han, & M.Damber.(2001) Data mining : concept and techniques, Morgan Kaufmann Publishers
- T.P.Hong, L.H.Tseng, & B.C.Chien.(2002) Learning fuzzy rules from incomplete numerical data by rough sets, IEEE international conference on Fuzzy Systems, 1438-1443
- J. C. Lee, & W.D.Lee.(2012) Biological early warning system using UChoo algorithm, Journal of Information and Communication Convergence Engineering, 16(1)
- J.Wu, Y.S.Kim, C.H.Song, & W.D.Lee.(2008) A new classifier to deal with incomplete data, International Conference on Software Engineering, Artificial Intelligence, Networking , 105-110
- K.Yang, A.Kolesnikova, & W.D.Lee.(2013) A new incremental learning algorithm with probabilistic weight using extended data expression, Journal of Information and Communication Convergence Engineering, 11(4), 258-267 https://doi.org/10.6109/jicce.2013.11.4.258
- Y. L. Cun, Y. Bengio, & G. Hinton.(2015) Deep learning. Nature, 521(7553), 436-444. DOI : 10.1038/nature14539
- J. Lee. (2018) A method of eye and lip region dectection using faster R-CNN in face image, Journal of the Korea Convergence Society, 9(1), 1-8, https://doi.org/10.15207/JKCS.2018.9.8.001
- J. Z. Kolter & M. A. Maloof(2003), Dynamic Weighted Majority: A New Ensemble Method for Tracking Concept Drift, Proceedings of the Third International IEEE Conference on Data Mining, 123-130.
- J. Z. Kolter, & M. A. Maloof. (2007). Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts, Journal of Machine Learning Research 8 (2007) 2755-2790.