DOI QR코드

DOI QR Code

Q-factor Estimation of Seismic Trace Including Random Noise using Peak Frequency-Shift Method

무작위 잡음이 포함된 탄성파 트레이스로부터 Peak Frequency-Shift 방법을 이용한 Q-factor 추정

  • Kwon, Junseok (Oceantech, Co. Ltd.) ;
  • Chung, Wookeen (Department of Energy & Resources Engineering, Korea Maritime and Ocean University) ;
  • Ha, Jiho (KIGAM Pohang Branch, Korea Institute of Geoscience and Mineral Resource) ;
  • Shin, Sungryul (Department of Energy & Resources Engineering, Korea Maritime and Ocean University)
  • 권준석 (오션테크(주)) ;
  • 정우근 (한국해양대학교 에너지자원공학과) ;
  • 하지호 (한국지질자원연구원 포항지질자원실증연구센터) ;
  • 신성렬 (한국해양대학교 에너지자원공학과)
  • Received : 2017.02.23
  • Accepted : 2018.02.13
  • Published : 2018.02.28

Abstract

The data acquired from seismic exploration can be used to detect the existence of oil and gas resources through appropriate processing and interpretation. The seismic attributes indicating the existence of resources are extracted from amplitude information, where the Q-factor representing intrinsic attenuation plays an useful role of hydrocarbon indicator. So, the accuracy of Q-factor estimation is very important to investigate the existence of resources. In this study, we calculated the Q-factor and analyzed the error rate through a numerical example. To mimic real data, random noise was added to the synthetic data. With the noise-added data, the Q-factor was estimated and the error rate was analyzed by using the spectral ratio method (SRM) and peak frequency shift method (PFSM). Both methods provided a relatively accurate Q-factor when the signal-to-noise ratio was 90 dB. However, the peak frequency shift method (PFSM) produced better results than the spectral ratio method (SRM) as the level of random noise increased.

탄성파 탐사를 통해 취득된 자료는 적절한 자료처리 및 해석 과정을 거쳐 석유, 가스 자원의 부존여부를 파악하는데 활용할 수 있다. 자원의 부존여부를 지시하는 탄성파 속성은 진폭 정보로부터 도출되며, 이 때 탄성파 고유 감쇠를 표현하는 Q 값은 탄화수소 지시자로서 유용하게 사용된다. 따라서, Q 값을 산출하는 기법의 정확성이 자원 부존여부를 파악하는데 매우 중요한 역할을 한다. 본 연구에서는 수치모형실험을 통해 탄성파 감쇠를 표현하는 Q 값을 산출하고 오차율을 분석하였다. 실제 현장자료를 모사하기 위해 무작위 잡음을 추가한 자료에 대하여 스펙트럼 진폭 비교법과 최대 주파수 이동법을 이용하여 Q 값을 산출하고 오차율을 분석하였다. Q 값을 산출한 결과 무작위 잡음을 추가하여 신호대 잡음비가 90 dB 일 때는 두 가지 방법 모두 비교적 정확한 값을 산출하였으나, 무작위 잡음의 크기가 증가할 경우 최대 주파수 이동법이 스펙트럼 진폭 비교법 보다 정확한 결과를 도출함을 알 수 있었다.

Keywords

References

  1. Byun, J. M., Yoo, D. G., and Lee, H. Y., 2011, Estimation of Q from Zero-offset VSP data in gas hydrate-bearing zone, J. Geophys. Eng., 14, 59-64.
  2. Castagna, J., Sun, S., and Siegfrield, R., 2003, Instantaneous spectral analysis. Detection of low-frequency shadows associated with hydrocarbons, The Leading Edge, 22, 120-127. https://doi.org/10.1190/1.1559038
  3. Haase, A. B., and Stewart, R. R., 2003, Q-factor estimation from borehole seismic data: Ross Lake, Saskatchewan, CREWES Research Report, 15, 1-7.
  4. Jang, Y. S., Kim, J. H., Jeong, H. J., and Nam, Y. H., 1999, Measurements of ultrasonic velocity and attenuation by signal processing techniques in time and frequency domain, J. Korean Soc. Nondestruc. Test., 19, 118-128 (in Korean with English abstract).
  5. Kim, M. Y., Ha, J. H., Shin, S. R., and Chung, W. K., 2014, Selection of the Optimal Linear Range for the Automated Qfactor Calculation, Geophys. and Geophys. Explor., 17, 253-259 (in Korean with English abstract) https://doi.org/10.7582/GGE.2014.17.4.253
  6. Lee, J. W., 2014, A study on Characteristics of Seismic Attenuation by using Spectral Ratio Method, MS Thesis, Korea Maritime and Ocean University, 1-51.
  7. Li, F., Zhou, H., Jiang, Nan., Bi, J., and Marfurt, K., 2015, Q estimation from reflection seismic data for hydrocarbon detection using a modified frequency shift method, J. Geophys. Eng., 12, 577-586. https://doi.org/10.1088/1742-2132/12/4/577
  8. Shin, S. R., Lee, S. C., Park, K. P., Lee, H. Y., Yoo, D. G., and Kim, Y. J., 2008, Seismic amplitude and frequency characteristics of gas hydrate bearing geologic model, Geophys. and Geophys. Explor., 11, 116-126 (in Korean with English abstract).
  9. Tarif, P., and Bourbie, T., 1987, Experimental comparison between spectral ratio and rise time techniques for the measurements of attenuation, Geophysics, 41, 668-680.
  10. Tobback, T., Steeghs, P., Drijkoningen, G. G., and Fokkema, T. J., 1996, Decomposition of seismic signals via time frequency representations, Proceedings of the 66th SEGAnnual Meeting, Denver, Colorado, USA.
  11. Toksoz, M. N., Johnston, D. H., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements, Geophysics, 44, 681-690. https://doi.org/10.1190/1.1440969
  12. Toksoz, M. N., and Johnston, D. H., 1981, Seismic wave attenuation, Soc. Expl. Geophys, reprint series, No. 2.
  13. Zhang, C. J., and Ulrych, T. J., 2002, Estimation of quality factors from CMP records, Geophysics, 67, 1542-1547. https://doi.org/10.1190/1.1512799