DOI QR코드

DOI QR Code

국내 전자정부 연구동향에 대한 정량적 분석: 텍스트 마이닝과 네트워크 분석 기법을 중심으로

Quantitative Analysis of Research Trends in Korean E-Government Using Text Mining and Network Analysis Methods

  • 이수인 (한국정보화진흥원 전자정부성과제도팀) ;
  • 신신애 (한국정보화진흥원 전자정부성과제도팀) ;
  • 강동석 (한국정보화진흥원 전자정부본부) ;
  • 김상현 (경북대학교 경영학부)
  • 투고 : 2017.08.27
  • 심사 : 2018.10.24
  • 발행 : 2018.12.31

초록

기존에 수행된 국내 전자정부 동향연구는 정성적 연구방법에만 의존하는 약점을 지니고 있다. 이에 본 연구는 2018년 9월 현재 시점에서 1996~2017년까지의 데이터를 기반으로 정량적 분석을 수행하였다. 텍스트 마이닝을 통해 도출된 연구주제는 총 7가지였으며, 그중에서도 프레임워크와 공공정책 효과의 네트워크 중심성이 높은 것으로 식별되었다. 본 연구결과는 전자정부의 발전을 위해 필요한 학술적/정책적 시사점을 제공하였다. 시사점 중의 하나는 기존 연구가 주로 수행하던 방식인 정성적 분석방법 대신에 정량적 분석방법을 활용하여, 상대적으로 객관성 및 학문의 다양성 확보에 이바지한다는 점이다.

The existing research on domestic e-government trends in Korea has weaknesses in that it depends only on qualitative research methods. Therefore, a quantitative analysis was conducted through this study as of September 2018 based on the data from 1996 to 2017. A total of seven research topics were derived from text mining, of which the network centrality of the framework and public policy effect were identified as highly significant. The results of this study provide academic and policy implications for the development of e-government. including that using a quantitative analysis method instead of a qualitative method contributes to ensuring relative objectivity and diversity of learning.

키워드

JBSHBC_2018_v25n4_84_f0001.png 이미지

<그림 1> 연구 분석절차 Research and analysis procedure

JBSHBC_2018_v25n4_84_f0002.png 이미지

<그림 2> LDA의 그래프 모델 Graph model of LDA

JBSHBC_2018_v25n4_84_f0003.png 이미지

<그림 3> 주제1~7의 토픽 분석결과 Topic modeling result for topic 1~7

JBSHBC_2018_v25n4_84_f0004.png 이미지

<그림 4> 1996~2017년 기간의 주제별 점유율 Proportion trends analysis (1996-2017s)

JBSHBC_2018_v25n4_84_f0005.png 이미지

<그림 5> 연구주제별 근접 중심성 수치 Closeness centrality by topics

JBSHBC_2018_v25n4_84_f0006.png 이미지

<그림 6> 전자정부 연구 분야의 주제 간 네트워크 분석 Network analysis between topics in e-government research field

JBSHBC_2018_v25n4_84_f0007.png 이미지

<그림 7> 연구주제별 키워드 간 네트워크 분석 Network analysis between topics with the top 10 words

JBSHBC_2018_v25n4_84_f0008.png 이미지

<그림 8> 연구주제별 3개 키워드 간 네트워크 분석 Network analysis between topics with the top 3 words

<표 1> 정보계층에 따른 대응과제와 관련 정책의 종류

Types of policy and related tasks according to information layer

JBSHBC_2018_v25n4_84_t0001.png 이미지

<표 2> Lee, et al.(2010)의 연구주제별 논문 분포

Distribution of study by research theme by Lee, et al.(2010)

JBSHBC_2018_v25n4_84_t0002.png 이미지

<표 3> Lee & Myeong(2013)의 연구주제별 논문 분포

Distribution of study by research theme by Lee & Myeong(2013)

JBSHBC_2018_v25n4_84_t0003.png 이미지

<표 4> 국내 선행연구 등이 제시한 6가지 연구주제

6 Themes presented by domestic researchers

JBSHBC_2018_v25n4_84_t0004.png 이미지

<표 5> 국외 선행연구에서 제시한 11가지 연구주제

11 Themes rresented in overseas previous research

JBSHBC_2018_v25n4_84_t0005.png 이미지

<표 6> 토픽 분석을 활용한 선행연구

Precedent study using by topic analysis

JBSHBC_2018_v25n4_84_t0006.png 이미지

<표 7> 연도별 논문 분포

Distribution of papers by year

JBSHBC_2018_v25n4_84_t0007.png 이미지

<표 8> 논문게재 건수 기준 상위 10개 발행기관 목록

List of top 10 issuers by number of papers published

JBSHBC_2018_v25n4_84_t0008.png 이미지

<표 9> 주제1~7의 정의 및 주요 키워드

Definitions and main keywords for topic 1~7

JBSHBC_2018_v25n4_84_t0009.png 이미지

<표 10> 전자정부 분야의 기간별 주제 비중

Weight of topic by period on e-government

JBSHBC_2018_v25n4_84_t0010.png 이미지

참고문헌

  1. An, J., Lee, S., An, E. & Kim, H. (2016). "Fintech Trends and Mobile Payment Service Analysis in Korea: Application of Text Mining Techniques." Informatization Policy, 23(3), 26-42. https://doi.org/10.22693/NIAIP.2016.23.3.026
  2. Bae, J., Son, J. & Song, M. (2013) "Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques." Journal of intelligence and information systems, 19(3), 141-156. https://doi.org/10.13088/jiis.2013.19.3.141
  3. Bae, J., Han, N. & Song, M. (2014) "Twitter Issue Tracking System by Topic Modeling Techniques." Journal of intelligence and information systems, 20(2), 109-122. https://doi.org/10.13088/JIIS.2014.20.2.109
  4. Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003). "Latent dirichlet allocation." Journal of machine Learning research, 3 (Jan): 993-1022.
  5. Cho, S., Choi, J. Lee, K. & Kim, H. (2015). "An Online Review Mining Approachtoa Recommendation System." Paper presented at the Korea Society of Management Information Systems.
  6. Cho, T. & Lee, J. (2015). "Latent Keyphrase Extraction Using LDA Model." Journal of Korean institute of intelligent systems, 25(2): 180-185. https://doi.org/10.5391/JKIIS.2015.25.2.180
  7. Electronic Times (2018). "[editorial] E-government, let's leap one more time." June 20.
  8. Gronloud, A. & Horan, T. A. (2005). "Introducing e-gov: history, definitions, and issues." Communications of the association for information systems, 15(1): 39.
  9. Han, K., Seo, Y. & Park, G. (2015). Subway Stations Network Structure Analysis by Using Social Network Analysis, Paper presented at the Korean Society for railway.
  10. Heo, W. (2018). "Mr. Mun has predicted UN e-government ranking down in this year." Digital Times, June 24.
  11. Hwang, J. (2003). "Review of e-Government Issue and Research." Informatization Policy, 10(3), 3-12.
  12. Hwang, S. & Murphy, P. (2017). "Mapping out e-government research literature: How interdisciplinary was it for the blooming decades?" Electronic Government, an International Journal, 13(3): 224-241. https://doi.org/10.1504/EG.2017.086684
  13. Jeong, J. (2013). "Trendsin the Study of e-Government: An Analysis of Korean Society and Public Administration." Korean Society and Public Administration, 24(2), 153-175.
  14. Kim, K. (2001). "Key issues of e-government perceived by governmentin for mation chiefs(CIOs)." Information communication policy ISSUE, 13(3), 1-29
  15. Kim, S. & Jang, S. (2016). "A Study on the Research Trends in Domestic Industrial and Management Engineering usingTopic Modeling." Journal of Korea Management Engineers Society, 21(3), 71-95.
  16. Kim, S. (2016). "[Special contribution] 'efficiency' is needed in informatization investment." Electronic Times, June 13.
  17. Kim, T. (2016). "Government, Promotion of information protection exports 4.5 trillion by the year 2020, 250 overseas companies." Security News, February 3.
  18. Lee, J. & Kim, B. (2003). Analysis and trends of e-government research through review of articles published in domestic journal. Paper presented at the Korea Society of Management Information Systems.
  19. Lee, Y., Kang, K., Shin, J. & Lee, C. (2010). "e-Government Research Trend in Korea: A Meta Study." Informatization Policy, 17(3), 36-56.
  20. Lee, H. & Myeong, S. (2013). "Research Trend and Analysis on the Issues of Informatization and E-Government in Korea." Informatization Policy, 20(4), 3-22.
  21. Lee, O., Park, S., Chung, D. & You, E. (2014). "Movie Box-office Analysis using Social Big Data." The Journal of the Korea Contents Association, 14(10), 527-538. https://doi.org/10.5392/JKCA.2014.14.10.527
  22. Lee, W. & Sohn, S. (2015). "Topic Model Analysis of Research Trend on Spatial Big Data." Journal of the Korean Institute of Industrial Engineers, 41(1), 64-73. https://doi.org/10.7232/JKIIE.2015.41.1.064
  23. Lee, Y. & Seo, Y. (2015). "A Performance Evaluation of the Smart Government Program in Korea." Journal of Korean Association for Regional Information Society, 18(2), 109-135.
  24. Lee, S. (2016). "A Study on the Application of Topic Modeling for the Book Report Text", Journal of Korean Library and Information Science Society, 47(4), 1-18. https://doi.org/10.16981/kliss.47.4.201612.1
  25. Lee, T., Youn, Y. & Kim, H. (2016). "The Analysis of Information Security Awareness Using A Text Mining Approach." Informatization Policy, 23(4), 76-94. https://doi.org/10.22693/NIAIP.2016.23.4.076
  26. Lee, Y. & Park, J. (2017). "An Analysis of the Research Trend in The Korean Journal of Measurement and Evaluation in Physical Education and Sport Science using Topic Models." Korean Society for Measurement and Evaluation in Physical Education and Sports Science, 19(2), 11-22.
  27. Lee, A., Choi, K. & Kim, G. (2018) Similar patent document model using LDA topic modeling. Paper presented at the Korea Intelligent Information Systems Society.
  28. Leem, B. & Chun, H. (2011). "A Study on the Impact of Social Network at Ports on Throughput with a focus on Port Cooperation Index." Posri business and economic review, 11(3), 289-307.
  29. Lofstedt, U. (2005). "E-government - Assessment of current research and some proposals for future directions." International Journal of Public Information Systems, 1: 39-52.
  30. Ministry of the Interior and Safety (2017a). 2017 Electronic Government Performance White Paper. Daegu: National Information Society Agency.
  31. Ministry of the Interior and Safety (2017b). 50-year Footprints of Korean eGovernment: The Greatest Leap in Korean History. Seoul: Ministry of the Interior and Safety.
  32. Na, S., Ahn, J., Jung, M. & Kim, J. (2008). "Research Trend Analysis for Smart Grids Using Dynamic Topic Modeling." The Transactions of the Korean Institute of Electrical Engineers, 66(4), 613-620. https://doi.org/10.5370/KIEE.2017.66.4.613
  33. Park, J. & Kang, S. "Measuring the Connectivity of Nodes in Road Networks." Journal of Korean Society of Transportation, 28(4), 129-139.
  34. Park, J. & Song, M. (2013). "A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling." Journal of the Korean society for information management, 30(1), 7-32. https://doi.org/10.3743/KOSIM.2013.30.1.007
  35. Park, S. (2015). "A Topic Analysis of SW Education Textdata Using R." Journal of The Korean Association of Information Education, 19(4), 517-524. https://doi.org/10.14352/jkaie.2015.19.4.517
  36. Rodriguez Bolivar, M. P., Alcaide Munoz, L., & Lopez Hernandez, A. M. (2010). "Trends of e-government research: Contextualization and research opportunities." The International Journal of Digital Accounting Research, 10: 87-111. https://doi.org/10.4192/1577-8517-v10_4
  37. Scholl, H. J. (2007). "Central research questions in e-government, or which trajectory should the study domain take?." Transforming Government: People, Process and Policy, 1(1): 67-88. https://doi.org/10.1108/17506160710733715
  38. Snead, J. T., & Wright, E. (2014). "E-government research in the United States." Government Information Quarterly, 31(1): 129-136. https://doi.org/10.1016/j.giq.2013.07.005
  39. Song, H., Park, K., Jung, H. & Song, M. (2013). Trend Analysis of Korean Economy in the Economic Literature by text mining techniques. Paper presented at the Korean Society for Information Society.
  40. Suh, B. & Shin, S. (2017). "A Study on the Research Trends on Domestic Platform Government using Topic Modeling." Informatization Policy, 24(3), 3-26. https://doi.org/10.22693/NIAIP.2017.24.3.003
  41. Tan, A. H. (1999). Text mining: The state of the art and the challenges. In Proceedings of the PAKDD 1999 Workshop on Knowledge Discovery from Advanced Databases.
  42. United Nations & American Society for Public Administration (2002). "Benchmarking e-government: A global perspective." New York: U.N. Publications.
  43. Wang, C. & Blei, D. M. (2011). Collaborative topic modeling for recommending scientific articles. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining.
  44. Wang, J. (2013). "Effects of E-Government: A Focus on Governance Indicators", Korean Journal of Public Administration, 51(4), 1-29.
  45. Wirtz, B. W. & Daiser, P. (2017). "E-government: Strategy Process Instruments." Textbook for the Digital Society. 2nd edition, Speyer. https://www.uni-speyer.de/files/de/Lehrst%C3BChle/Wirtz/WirtzDaiser_2017_EGovernment.pdf. (Retrieved on August 16, 2018).
  46. Yoo, L. & Hwang, S. (2017). "A Trend Analysis of Agricultural and Food Marketing Studies Using Text-mining Technique." Journal of the Korea Academia-Industrial cooperation Society, 18(10).
  47. Unpublished: National Information Society Agency (2017). "EA Concept and Government-wide Enterprise Architecture Status of Implementation.", https://www.geap.go.kr/. (Retrieved on November 6).