Fig. 1. Construction of Faster R-CNN detector technique. 그림 1. Faster R-CNN 검출기법의 구조
Fig. 2. Flowchart of data set processing. 그림 2. 데이터셋 처리 순서도
Fig. 3. Flame images using image augmentation. 그림 3. 이미지 오그멘테이션을 이용한 화염 이미지
Fig. 4. Leaning processing of fire detection model. 그림 4. 화재검출 모델의 학습처리 과정
Fig. 5. Flame Detection results in fire images. 그림 5. 화재 이미지에서 불꽃의 검출 결과
Fig. 6. Unrecognizable types in non_fire images. 그림 6. 비화재 이미지의 오검출 유형
Fig. 7. Graphs of Accuracy, Precision, and Recall. 그림 7. 정확도, 정밀도, 검출률 그래프
Table 1. Classification of data set. 표 1. 데이터셋의 분류
Table 2. Proposed types of image augmentation. 표 2. 제안한 이미지 오그멘테이션 유형
Table 3. Specification used to model learning. 표 3. 모델 학습에 사용된 사양
Table 4. Detection results on image augmentation types. 표 4. 이미지 오그멘테이션 유형별 검출결과
References
- J. S. Won, "A Study Focused on Responding to Fire-Related Accidents", The Seoul Institute Policy Report, Vol. 239, pp.1-21, 2017.
- L. Xiao, "A Distributed Reinforcement Learning Solution With Knowledge Transfer Capability for A Bike Rebalancing Problem," arXiv preprint, arXiv: 1810.04058, 2018.
- Y. Bengio, "Learning Deep Architecture for AI," Foundations and trends(R) in Machine Learning, Vol.2, No.1, pp.1-127, 2009. https://doi.org/10.1561/2200000006
- G. Hinton, S. Osindero, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, Vol.18, No.7, pp.1527-1554, 2006. https://doi.org/10.1162/neco.2006.18.7.1527
- G. Huang, Z. Liu, K. Q. Weinberger, "Densely Connected Convolutional Networks," arXiv preprint, arXiv:1608.06993, 2018.
- F. Pereira, P. Norvig, A. Halevy, "The Unreasonable Effectiveness of Data," IEEE Intelligent Systems, Vol.24, pp.8-12, 2009.
- R. Girshick, J. Donahue, T. Darrell, "Rich feature hierarchies for accurate object detection and semantic segmentation," arXiv preprint, arXiv:1311.2524v5, pp.1-20, 2014.
- S. Ren, K. He, R. Girshick, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," arXiv preprint, arXiv:1506.01497, 2016.
- M. K. Lee, K. S. Seo, "Comparison of Region-based CNN Methods for Defects Detection on Metal Surface," The Transactions of the Korean Institute of Electrical Engineers, Vol.67, No.7, pp.865-870, 2018. https://doi.org/10.5370/KIEE.2018.67.7.865
- L. Perez, J. Wang, "The Effectiveness of Data Augmentation in Image Classification using Deep Learning,"arXiv preprint, arXiv:1712.04621, 2017.
- A. Lecoutre, B. Negrevergne, F. Yger, "Recognizing Art Style Automatically in painting with deep learning," Proceedings of Machine Learning Research, Vol.77, pp.327-342, 2017.
- Z. Hussain, F. Gimenez, D. Yi, "Differential Data Augmentation Techniques for Medical Imaging Classification Tasks," AMIA Annu Symp Proc., pp.979-984, 2017.