FIG. 1. (Color online) Schematic diagram of electron tunneling in the vicinity of vacuum-level modification associated with a THz pulse, for (a) positive phase and (b) negative phase.
FIG. 2. (Color online) Calculated kinetic-energy distribution as a function of time (black curve), and tunneling current as a function of time (red curve), for a carrier-envelope phase (CEP) difference of (a) zero and (b) π/2. (c) Net tunneling current as a function of CEP difference. (d) Polar plot of the absolute value of the net tunneling current.
FIG. 3. (Color online) Calculated kinetic-energy spectrum for a CEP difference of (a) zero, (b) π/2, (c) π, and (d) 3π/2.
FIG. 4. (Color online) Log-log plot of calculated tunneling current as a function of THz field amplitude.
FIG. 5. (Color online) Calculated kinetic-energy distribution as a function of time (black curve), and tunneling current as a function of time (red curve), for a THz field amplitude of (a) 33.3 kV/cm and (b) 137 kV/cm. Calculated kinetic-energy spectrum for a THz field amplitude of (c) 33.3 kV/cm and (d) 137 kV/cm.
FIG. 6. (Color online) Schematic diagram of dc bias contribution plus THz electric field, for a CEP difference of (a) zero and (b) π. (c) Log-log plot of calculated tunneling current as a function of dc bias, for a CEP difference of zero (black solid square), π/2 and 3π/2 (blue open square), and π (red solid circle); (inset) linear plot of calculated tunneling current.
FIG. 7. (Color online) Calculated kinetic-energy distribution as a function of time (black curve), and tunneling current as a function of time (red curve), with 2 V applied bias, for a carrier-envelope phase (CEP) difference of (a) zero, (b) π/2, and (c) π. Calculated kinetic-energy spectrum for a CEP difference of (d) zero, (e) π/2, and (f) π.
참고문헌
- S. B. Choi and D. J. Park, "Ultrafast optical switching of terahertz wave transmission through semiconductor/metallic subwavelength slot antenna hybrid structure," Curr. Appl. Phys. 16, 109-114 (2016). https://doi.org/10.1016/j.cap.2015.11.001
- J. Jeong, H. S. Yun, D. Kim, K. S. Lee, H.-K. Choi, Z. H. Kim, S. W. Lee, and D.-S. Kim, "High contrast detection of water-filled terahertz nanotrenches," Adv. Opt. Mater. 6, 1800582.
- X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, "Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves," Nat. Commun. 4, 2361 (2013). https://doi.org/10.1038/ncomms3361
- Y.-M. Bahk, B. J. Kang, Y. S. Kim, J.-Y. Kim, W. T. Kim, T. Y. Kim, T. Kang, J. Rhie, S. Han, C.-H. Park, F. Rotermund, and D.-S. Kim, "Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies," Phys. Rev. Lett. 115, 125501 (2015). https://doi.org/10.1103/PhysRevLett.115.125501
- J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, "Terahertz quantum plasmonics of nanoslot antennas in nonlinear regime," Nano Lett. 15, 6683-6688 (2015). https://doi.org/10.1021/acs.nanolett.5b02505
- S. Han, J.-Y. Kim, T. Kang, Y.-M. Bahk, J. Rhie, B. J. Kang, Y. S. Kim, J. Park, W. T. Kim, H. Jeon, F. Rotermund, and D.-S. Kim, "Colossal terahertz nonlinearity in angstrom- and nanometer-sized gaps," ACS Photon. 3, 1440-1445 (2016). https://doi.org/10.1021/acsphotonics.6b00103
- P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, "Field emission tip as a nanometer source of free electron femtosecond pulses," Phys. Rev. Lett. 96, 077401 (2006). https://doi.org/10.1103/PhysRevLett.96.077401
- D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, and C. Lienau, "Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip," Phys. Rev. Lett. 109, 244803 (2012). https://doi.org/10.1103/PhysRevLett.109.244803
- D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, P. Gross, and C. Lienau, "Characterizing the optical near-field in the vicinity of a sharp metallic nanoprobe by angle-resolved electron kinetic energy spectroscopy," Annalen der Physik 525, 135-142 (2013). https://doi.org/10.1002/andp.201200216
- B. H. Son, H. S. Kim, J.-Y. Park, S. Lee, D. J. Park, and Y. H. Ahn, "Ultrafast strong-field tunneling emission in graphene nanogaps," ACS Photon. 5, 3943-3949 (2018). https://doi.org/10.1021/acsphotonics.8b00857
- G. Herink, D. R. Solli, M. Gulde, and C. Ropers, "Fielddriven photoemission from nanostructures quenches the quiver motion," Nature 483, 190 (2012). https://doi.org/10.1038/nature10878
- H. Yang, D.-S. Kim, R. H. J.-Y. Kim, J. S. Ahn, T. Kang, J. Jeong, and D. Lee, "Magnetic nature of light transmission through a 5-nm gap," Sci. Rep. 8, 2751 (2018). https://doi.org/10.1038/s41598-018-21037-1
- J. Rhie, D. Lee, Y.-M. Bahk, J. Jeong, G. Choi, Y. Lee, S. Kim, S. Hong, and D.-S. Kim, "Control of optical nanometer gap shapes made via standard lithography using atomic layer deposition," J. Micro/Nanolithogr., MEMS, MOEMS 17, 023504 (2018).
- P. J. Potts, A Handbook of Silicate Rock Analysis (Springer, 1992).
- G. Herink, L. Wimmer, and C. Ropers, "Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics," New J. Phys. 16, 123005 (2014). https://doi.org/10.1088/1367-2630/16/12/123005
- M. Kruger, M. Schenk, and P. Hommelhoff, "Attosecond control of electrons emitted from a nanoscale metal tip," Nature 475, 78 (2011). https://doi.org/10.1038/nature10196
- B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Gross, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, "Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures," Nat. Photon. 8, 37 (2013).