DOI QR코드

DOI QR Code

Theoretical Study of the Strong Field Emission of Electrons inside a Nanogap Due to an Enhanced Terahertz Field

  • Received : 2018.11.02
  • Accepted : 2018.11.13
  • Published : 2018.12.25

Abstract

We report the development of a theoretical model describing the strong field tunneling of electrons in an extremely small nanogap (having a width of a few nanometers) that is driven by terahertz-pulse irradiation, by modifying a conventional semiclassical model that is widely applied for near-infrared wavelengths. We demonstrate the effects of carrier-envelope phase difference and strength of the incident THz field on the tunneling current across the nanogap. Additionally, we show that the dc bias also contributes to the generation of tunneling current, but the nature of the contribution is completely different for different carrier-envelope phases.

Keywords

KGHHD@_2018_v2n6_508_f0001.png 이미지

FIG. 1. (Color online) Schematic diagram of electron tunneling in the vicinity of vacuum-level modification associated with a THz pulse, for (a) positive phase and (b) negative phase.

KGHHD@_2018_v2n6_508_f0002.png 이미지

FIG. 2. (Color online) Calculated kinetic-energy distribution as a function of time (black curve), and tunneling current as a function of time (red curve), for a carrier-envelope phase (CEP) difference of (a) zero and (b) π/2. (c) Net tunneling current as a function of CEP difference. (d) Polar plot of the absolute value of the net tunneling current.

KGHHD@_2018_v2n6_508_f0003.png 이미지

FIG. 3. (Color online) Calculated kinetic-energy spectrum for a CEP difference of (a) zero, (b) π/2, (c) π, and (d) 3π/2.

KGHHD@_2018_v2n6_508_f0004.png 이미지

FIG. 4. (Color online) Log-log plot of calculated tunneling current as a function of THz field amplitude.

KGHHD@_2018_v2n6_508_f0005.png 이미지

FIG. 5. (Color online) Calculated kinetic-energy distribution as a function of time (black curve), and tunneling current as a function of time (red curve), for a THz field amplitude of (a) 33.3 kV/cm and (b) 137 kV/cm. Calculated kinetic-energy spectrum for a THz field amplitude of (c) 33.3 kV/cm and (d) 137 kV/cm.

KGHHD@_2018_v2n6_508_f0006.png 이미지

FIG. 6. (Color online) Schematic diagram of dc bias contribution plus THz electric field, for a CEP difference of (a) zero and (b) π. (c) Log-log plot of calculated tunneling current as a function of dc bias, for a CEP difference of zero (black solid square), π/2 and 3π/2 (blue open square), and π (red solid circle); (inset) linear plot of calculated tunneling current.

KGHHD@_2018_v2n6_508_f0007.png 이미지

FIG. 7. (Color online) Calculated kinetic-energy distribution as a function of time (black curve), and tunneling current as a function of time (red curve), with 2 V applied bias, for a carrier-envelope phase (CEP) difference of (a) zero, (b) π/2, and (c) π. Calculated kinetic-energy spectrum for a CEP difference of (d) zero, (e) π/2, and (f) π.

References

  1. S. B. Choi and D. J. Park, "Ultrafast optical switching of terahertz wave transmission through semiconductor/metallic subwavelength slot antenna hybrid structure," Curr. Appl. Phys. 16, 109-114 (2016). https://doi.org/10.1016/j.cap.2015.11.001
  2. J. Jeong, H. S. Yun, D. Kim, K. S. Lee, H.-K. Choi, Z. H. Kim, S. W. Lee, and D.-S. Kim, "High contrast detection of water-filled terahertz nanotrenches," Adv. Opt. Mater. 6, 1800582.
  3. X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, "Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves," Nat. Commun. 4, 2361 (2013). https://doi.org/10.1038/ncomms3361
  4. Y.-M. Bahk, B. J. Kang, Y. S. Kim, J.-Y. Kim, W. T. Kim, T. Y. Kim, T. Kang, J. Rhie, S. Han, C.-H. Park, F. Rotermund, and D.-S. Kim, "Electromagnetic saturation of angstrom-sized quantum barriers at terahertz frequencies," Phys. Rev. Lett. 115, 125501 (2015). https://doi.org/10.1103/PhysRevLett.115.125501
  5. J.-Y. Kim, B. J. Kang, J. Park, Y.-M. Bahk, W. T. Kim, J. Rhie, H. Jeon, F. Rotermund, and D.-S. Kim, "Terahertz quantum plasmonics of nanoslot antennas in nonlinear regime," Nano Lett. 15, 6683-6688 (2015). https://doi.org/10.1021/acs.nanolett.5b02505
  6. S. Han, J.-Y. Kim, T. Kang, Y.-M. Bahk, J. Rhie, B. J. Kang, Y. S. Kim, J. Park, W. T. Kim, H. Jeon, F. Rotermund, and D.-S. Kim, "Colossal terahertz nonlinearity in angstrom- and nanometer-sized gaps," ACS Photon. 3, 1440-1445 (2016). https://doi.org/10.1021/acsphotonics.6b00103
  7. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, and M. A. Kasevich, "Field emission tip as a nanometer source of free electron femtosecond pulses," Phys. Rev. Lett. 96, 077401 (2006). https://doi.org/10.1103/PhysRevLett.96.077401
  8. D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, and C. Lienau, "Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip," Phys. Rev. Lett. 109, 244803 (2012). https://doi.org/10.1103/PhysRevLett.109.244803
  9. D. J. Park, B. Piglosiewicz, S. Schmidt, H. Kollmann, M. Mascheck, P. Gross, and C. Lienau, "Characterizing the optical near-field in the vicinity of a sharp metallic nanoprobe by angle-resolved electron kinetic energy spectroscopy," Annalen der Physik 525, 135-142 (2013). https://doi.org/10.1002/andp.201200216
  10. B. H. Son, H. S. Kim, J.-Y. Park, S. Lee, D. J. Park, and Y. H. Ahn, "Ultrafast strong-field tunneling emission in graphene nanogaps," ACS Photon. 5, 3943-3949 (2018). https://doi.org/10.1021/acsphotonics.8b00857
  11. G. Herink, D. R. Solli, M. Gulde, and C. Ropers, "Fielddriven photoemission from nanostructures quenches the quiver motion," Nature 483, 190 (2012). https://doi.org/10.1038/nature10878
  12. H. Yang, D.-S. Kim, R. H. J.-Y. Kim, J. S. Ahn, T. Kang, J. Jeong, and D. Lee, "Magnetic nature of light transmission through a 5-nm gap," Sci. Rep. 8, 2751 (2018). https://doi.org/10.1038/s41598-018-21037-1
  13. J. Rhie, D. Lee, Y.-M. Bahk, J. Jeong, G. Choi, Y. Lee, S. Kim, S. Hong, and D.-S. Kim, "Control of optical nanometer gap shapes made via standard lithography using atomic layer deposition," J. Micro/Nanolithogr., MEMS, MOEMS 17, 023504 (2018).
  14. P. J. Potts, A Handbook of Silicate Rock Analysis (Springer, 1992).
  15. G. Herink, L. Wimmer, and C. Ropers, "Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics," New J. Phys. 16, 123005 (2014). https://doi.org/10.1088/1367-2630/16/12/123005
  16. M. Kruger, M. Schenk, and P. Hommelhoff, "Attosecond control of electrons emitted from a nanoscale metal tip," Nature 475, 78 (2011). https://doi.org/10.1038/nature10196
  17. B. Piglosiewicz, S. Schmidt, D. J. Park, J. Vogelsang, P. Gross, C. Manzoni, P. Farinello, G. Cerullo, and C. Lienau, "Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures," Nat. Photon. 8, 37 (2013).