DOI QR코드

DOI QR Code

금속-유기 구조체를 이용한 포토닉 크리스탈 기반의 효율적인 습도 컬러 센서

Efficient Humidity Color Sensor Based on a Photonic Crystal with a Metal-Organic Framework

  • 김준용 (경북대학교 IT대학 전자공학부) ;
  • 이성학 (경북대학교 IT대학 전자공학부) ;
  • 도윤선 (경북대학교 IT대학 전자공학부)
  • Kim, Jun Yong (School of Electronics Engineering, Kyungpook National University) ;
  • Lee, Sung Hak (School of Electronics Engineering, Kyungpook National University) ;
  • Do, Yun Seon (School of Electronics Engineering, Kyungpook National University)
  • 투고 : 2018.09.20
  • 심사 : 2018.11.03
  • 발행 : 2018.12.25

초록

본 연구에서는 1차원 포토닉 크리스탈과 금속-유기 구조체 (MOF) 물질인 Hong Kong University of Science and Technology(HKUST-1)을 이용한 수분 감지 컬러 센서를 제안한다. 1차원 포토닉 크리스탈은 주기적인 굴절률 변화에 의해 포토닉 밴드갭이 존재하고, 특정한 파장 대역의 광 성분을 차단 및 반사한다. HKUST-1의 굴절률은 건조한 환경과 습한 환경에서 그 값이 서로 다르다. 여기서 우리는 포토닉 밴드갭의 유무를 활용하여 FDTD 시뮬레이션으로 센서를 설계하였다. 광학 해석 결과, 투과된 광의 색 변환보다 반사된 광의 색 변환이 우수하여 반사된 광을 이용하였다. 그리고 포토닉 밴드갭의 중심 파장이 550 nm인 경우, 건조한 환경 대비 습한 환경의 최대 피크 값이 약 9.5배로 증가했으며, 무채색에서 녹색으로 색 변환이 가능하여 센서로의 특성이 우수하였다. 본 연구 결과는 MOF 물질의 수분 감지 컬러 센서로의 활용을 제시하였으며, MOF 물질의 나노 구조 설계로 산업 디바이스로의 활용성도 확대할 것이다.

In this study we suggest a humidity-sensitive color sensor using a one-dimensional photonic crystal and Hong Kong University of Science and Technology-1 (HKUST-1), which is a metal-organic framework (MOF) substance. One-dimensional photonic crystals have a photonic band gap, due to a periodic refractive-index change, and block and reflect light components in a specific wavelength band. The refractive index of HKUST-1 differs in dry and humid environments. Herein we designed a sensor using the presence of the photonic band gap, with FDTD simulation. As a result of optical analysis, the color conversion of the reflected light was superior to the color conversion of the transmitted light. When the center wavelength of the photonic band gap was 550 nm, the maximum peak value of the wet environment increased by a factor of about 9.5 compared to the dry environment, and the color conversion from achromatic to green was excellent as a sensor. The results of this study suggest the application of MOF materials to moisture sensors, and the nanostructure design of MOF materials will expand the applications to industrial devices.

키워드

KGHHBU_2018_v29n6_268_f0001.png 이미지

Fig. 1. Conceptual diagram of the 1-dimension photonic crystal for moisture sensing color sensor.

KGHHBU_2018_v29n6_268_f0003.png 이미지

Fig. 3. Measured spectra at different numbers of layers. (a-c) The HKUST-1 is exposed to a dry environment, and the specific wavelengths are (a) 400 nm, (b) 550 nm, and (c) 650 nm. (d-f) The HKUST-1 is exposed to a wet environment, and the specific wavelengths are (d) 400 nm, (e) 550 nm, and (f) 650 nm.

KGHHBU_2018_v29n6_268_f0004.png 이미지

Fig. 4. Movement of color coordinate along with change in number of layers. The color conversion according to the refractive index change of HKUST-1 is expressed as lines. Color coordinate for number of layers (a) SPB-B, (b) SPB-G, (c) SPB-R, (d) Color conversion difference according to the number of layers.

KGHHBU_2018_v29n6_268_f0005.png 이미지

Fig. S1. (a) Spectral response characteristics of the rod and three cone cells. (b) Spectral luminous efficiency function, V (λ): photopic vision, V’ (λ): scotopic vision.

KGHHBU_2018_v29n6_268_f0006.png 이미지

Fig. S2. Color conversion difference of the transmittance and reflectance.

KGHHBU_2018_v29n6_268_f0007.png 이미지

Fig. 2. The spectra and color coordinate of transmittance and reflectance of HKUST-1 in dry and wet environments at a center wavelength 550 nm of the photonic band gap. (a) Transmittance and reflectance spectra, (b) Color coordinate for transmittance and reflectance.

Table 1. Calculated thickness of CaF2 and HKUST-1 for specific wavelength

KGHHBU_2018_v29n6_268_t0001.png 이미지

참고문헌

  1. Q. Yan, L. Wang, and X. S. Zhao, "Artificial defect engineering in three-dimensional colloidal photonic crystals," Adv. Funct. Mater. 17, 3695-3706 (2007). https://doi.org/10.1002/adfm.200600538
  2. K. Tsakmakidis, "In the limelight," Nat. Mater. 11, 1000-1001 (2012). https://doi.org/10.1038/nmat3504
  3. S. John, "Why trap light?," Nat. Mater. 11, 997-999 (2012). https://doi.org/10.1038/nmat3503
  4. Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, "Bio-inspired variable structural color materials," Chem. Soc. Rev. 41, 3297-3317 (2012). https://doi.org/10.1039/c2cs15267c
  5. C. Paquet and E. Kumacheva, "Nanostructured polymers for photonics," Mater. Today 11, 48-56 (2008).
  6. E. Tian, J. Wang, Y. Zheng, Y. Song, L. Jiang, and D. Zhu, "Colorful humidity sensitive photonic crystal hydrogel," J. Mater. Chem. 18, 1116-1122 (2008). https://doi.org/10.1039/b717368g
  7. I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, "Humidity enhanced thermally tunable $TiO_2/SiO_2$ bragg stacks," J. Phys. Chem. C 116, 298-305 (2012). https://doi.org/10.1021/jp208733t
  8. S. Colodrero, M. Ocana, and H. Miguez, "Nanoparticle-based one-dimensional photonic crystals," Langmuir 24, 4430-4434 (2008). https://doi.org/10.1021/la703987r
  9. S. Y. Choi, M. Mamak, G. Von Freymann, N. Chopra, and G. A. Ozin, "Mesoporous bragg stack color tunable sensors," Nano Lett. 6, 2456-2461 (2006). https://doi.org/10.1021/nl061580m
  10. Y.-J. Lee and P. V. Braun, "Tunable inverse opal hydrogel pH sensors," Adv. Mater. 15, 563-566 (2003). https://doi.org/10.1002/adma.200304588
  11. H. S. Lim, J. H. Lee, J. J. Walish, and E. L. Thomas, "Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange," ACS Nano 6, 8933-8939 (2012). https://doi.org/10.1021/nn302949n
  12. S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure," J. Am. Chem. Soc. 126, 8314-8319 (2004). https://doi.org/10.1021/ja0495056
  13. C. I. Aguirre, E. Reguera, and A. Stein, "Tunable colors in opals and inverse opal photonic crystals," Adv. Funct. Mater. 20, 2565-2578 (2010). https://doi.org/10.1002/adfm.201000143
  14. M. M. Hawkeye and M. J. Brett, "Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition," Adv. Funct. Mater. 21, 3652-3658 (2011). https://doi.org/10.1002/adfm.201100893
  15. S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M. P. Suh, and J. Reedijk, "Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013)," Pure Appl. Chem. 85, 1715-1724 (2013). https://doi.org/10.1351/PAC-REC-12-11-20
  16. L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, "2-40 metal-organic framework materials as chemical sensors," Chem. Rev. 112, 1105-1125 (2012). https://doi.org/10.1021/cr200324t
  17. M. Allendorf, "Stress-induced chemical detection using flexible metal - organic frameworks," J. Am. Chem. Soc. 130, 14404-14405 (2008). https://doi.org/10.1021/ja805235k
  18. S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, "A chemically functionalizable nanoporous material $[Cu_3(TMA)_2(H_2O)_3]_n$," Science 283, 1148-1150 (1999). https://doi.org/10.1126/science.283.5405.1148
  19. E. Biemmi, A. Darga, N. Stock, and T. Bein, "Direct growth of $Cu_3(BTC)_2(H_2O)_3{\cdot}xH2O$ thin films on modified QCMgold electrodes - Water sorption isotherms," Microporous Mesoporous Mater. 114, 380-386 (2008). https://doi.org/10.1016/j.micromeso.2008.01.024
  20. Q. M. Wang, D. Shen, M. Bülow, M. L. Lau, S. Deng, F. R. Fitch, N. O. Lemcoff, and J. Semanscin, "Metalloorganic molecular sieve for gas separation and purification," Microporous Mesoporous Mater. 55, 217-230 (2002). https://doi.org/10.1016/S1387-1811(02)00405-5
  21. I. Senkovska and S. Kaskel, "High pressure methane adsorption in the metal-organic frameworks $Cu_3(btc)_2, Zn_2(bdc)_{2}dabco,\;and\;Cr_3F(H_2O)_{2}O(bdc)_3$," Microporous Mesoporous Mater. 112, 108-115 (2008). https://doi.org/10.1016/j.micromeso.2007.09.016
  22. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573 (1998). https://doi.org/10.1364/OL.23.001573
  23. J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 53, 4107-4121 (1996).
  24. B. Bowser, L. Brower, M. Ohnsorg, L. Gentry, C. Beaudoin, and M. Anderson, "Comparison of surface-bound and free-standing variations of HKUST-1 MOFs: Effect of activation and ammonia exposure on morphology, crystallinity, and composition," Nanomaterials 8, 650 (2018). https://doi.org/10.3390/nano8090650
  25. E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann, and C. Woll, "On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films," Appl. Phys. Lett. 103 (2013).
  26. M. Daimon and A. Masumura, "High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm," Appl. Opt. 41, 5275-81 (2002). https://doi.org/10.1364/AO.41.005275
  27. G. Wyszecki and W. S. Stiles, Color Science 2nd Edition (John Wiley & Sons, New York, 1982), pp. 257.
  28. A. C. Harris and I. L. Weatherall, "Objective evaluation of colour variation in the sandburrowing beetle chaerodes trachyscelides white (Coleoptera: Tenebrionidae) by instrumental determination of CIELAB values," J. R. Soc. New Zeal. 20, 253-259 (1990). https://doi.org/10.1080/03036758.1990.10416819
  29. H. S. Fairman, M. H. Brill, and H. Hemmendinger, "How the CIE 1931 color-matching functions were derived from Wright-Guild data," Color Res. Appl. 22, 11-23 (1997). https://doi.org/10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
  30. W. S. Stiles and J. M. Burch, "N.P.L. Colour-matching investigation: Final report (1958)," Opt. Acta Int. J. Opt. 6, 1-26 (1959). https://doi.org/10.1080/713826267