Fig. 1. Conceptual diagram of the 1-dimension photonic crystal for moisture sensing color sensor.
Fig. 3. Measured spectra at different numbers of layers. (a-c) The HKUST-1 is exposed to a dry environment, and the specific wavelengths are (a) 400 nm, (b) 550 nm, and (c) 650 nm. (d-f) The HKUST-1 is exposed to a wet environment, and the specific wavelengths are (d) 400 nm, (e) 550 nm, and (f) 650 nm.
Fig. 4. Movement of color coordinate along with change in number of layers. The color conversion according to the refractive index change of HKUST-1 is expressed as lines. Color coordinate for number of layers (a) SPB-B, (b) SPB-G, (c) SPB-R, (d) Color conversion difference according to the number of layers.
Fig. S1. (a) Spectral response characteristics of the rod and three cone cells. (b) Spectral luminous efficiency function, V (λ): photopic vision, V’ (λ): scotopic vision.
Fig. S2. Color conversion difference of the transmittance and reflectance.
Fig. 2. The spectra and color coordinate of transmittance and reflectance of HKUST-1 in dry and wet environments at a center wavelength 550 nm of the photonic band gap. (a) Transmittance and reflectance spectra, (b) Color coordinate for transmittance and reflectance.
Table 1. Calculated thickness of CaF2 and HKUST-1 for specific wavelength
참고문헌
- Q. Yan, L. Wang, and X. S. Zhao, "Artificial defect engineering in three-dimensional colloidal photonic crystals," Adv. Funct. Mater. 17, 3695-3706 (2007). https://doi.org/10.1002/adfm.200600538
- K. Tsakmakidis, "In the limelight," Nat. Mater. 11, 1000-1001 (2012). https://doi.org/10.1038/nmat3504
- S. John, "Why trap light?," Nat. Mater. 11, 997-999 (2012). https://doi.org/10.1038/nmat3503
- Y. Zhao, Z. Xie, H. Gu, C. Zhu, and Z. Gu, "Bio-inspired variable structural color materials," Chem. Soc. Rev. 41, 3297-3317 (2012). https://doi.org/10.1039/c2cs15267c
- C. Paquet and E. Kumacheva, "Nanostructured polymers for photonics," Mater. Today 11, 48-56 (2008).
- E. Tian, J. Wang, Y. Zheng, Y. Song, L. Jiang, and D. Zhu, "Colorful humidity sensitive photonic crystal hydrogel," J. Mater. Chem. 18, 1116-1122 (2008). https://doi.org/10.1039/b717368g
-
I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, "Humidity enhanced thermally tunable
$TiO_2/SiO_2$ bragg stacks," J. Phys. Chem. C 116, 298-305 (2012). https://doi.org/10.1021/jp208733t - S. Colodrero, M. Ocana, and H. Miguez, "Nanoparticle-based one-dimensional photonic crystals," Langmuir 24, 4430-4434 (2008). https://doi.org/10.1021/la703987r
- S. Y. Choi, M. Mamak, G. Von Freymann, N. Chopra, and G. A. Ozin, "Mesoporous bragg stack color tunable sensors," Nano Lett. 6, 2456-2461 (2006). https://doi.org/10.1021/nl061580m
- Y.-J. Lee and P. V. Braun, "Tunable inverse opal hydrogel pH sensors," Adv. Mater. 15, 563-566 (2003). https://doi.org/10.1002/adma.200304588
- H. S. Lim, J. H. Lee, J. J. Walish, and E. L. Thomas, "Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange," ACS Nano 6, 8933-8939 (2012). https://doi.org/10.1021/nn302949n
- S. Kubo, Z. Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, "Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure," J. Am. Chem. Soc. 126, 8314-8319 (2004). https://doi.org/10.1021/ja0495056
- C. I. Aguirre, E. Reguera, and A. Stein, "Tunable colors in opals and inverse opal photonic crystals," Adv. Funct. Mater. 20, 2565-2578 (2010). https://doi.org/10.1002/adfm.201000143
- M. M. Hawkeye and M. J. Brett, "Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition," Adv. Funct. Mater. 21, 3652-3658 (2011). https://doi.org/10.1002/adfm.201100893
- S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O'Keeffe, M. P. Suh, and J. Reedijk, "Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013)," Pure Appl. Chem. 85, 1715-1724 (2013). https://doi.org/10.1351/PAC-REC-12-11-20
- L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, "2-40 metal-organic framework materials as chemical sensors," Chem. Rev. 112, 1105-1125 (2012). https://doi.org/10.1021/cr200324t
- M. Allendorf, "Stress-induced chemical detection using flexible metal - organic frameworks," J. Am. Chem. Soc. 130, 14404-14405 (2008). https://doi.org/10.1021/ja805235k
-
S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen, and I. D. Williams, "A chemically functionalizable nanoporous material
$[Cu_3(TMA)_2(H_2O)_3]_n$ ," Science 283, 1148-1150 (1999). https://doi.org/10.1126/science.283.5405.1148 -
E. Biemmi, A. Darga, N. Stock, and T. Bein, "Direct growth of
$Cu_3(BTC)_2(H_2O)_3{\cdot}xH2O$ thin films on modified QCMgold electrodes - Water sorption isotherms," Microporous Mesoporous Mater. 114, 380-386 (2008). https://doi.org/10.1016/j.micromeso.2008.01.024 - Q. M. Wang, D. Shen, M. Bülow, M. L. Lau, S. Deng, F. R. Fitch, N. O. Lemcoff, and J. Semanscin, "Metalloorganic molecular sieve for gas separation and purification," Microporous Mesoporous Mater. 55, 217-230 (2002). https://doi.org/10.1016/S1387-1811(02)00405-5
-
I. Senkovska and S. Kaskel, "High pressure methane adsorption in the metal-organic frameworks
$Cu_3(btc)_2, Zn_2(bdc)_{2}dabco,\;and\;Cr_3F(H_2O)_{2}O(bdc)_3$ ," Microporous Mesoporous Mater. 112, 108-115 (2008). https://doi.org/10.1016/j.micromeso.2007.09.016 - J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573 (1998). https://doi.org/10.1364/OL.23.001573
- J. M. Bendickson, J. P. Dowling, and M. Scalora, "Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures," Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 53, 4107-4121 (1996).
- B. Bowser, L. Brower, M. Ohnsorg, L. Gentry, C. Beaudoin, and M. Anderson, "Comparison of surface-bound and free-standing variations of HKUST-1 MOFs: Effect of activation and ammonia exposure on morphology, crystallinity, and composition," Nanomaterials 8, 650 (2018). https://doi.org/10.3390/nano8090650
- E. Redel, Z. Wang, S. Walheim, J. Liu, H. Gliemann, and C. Woll, "On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films," Appl. Phys. Lett. 103 (2013).
- M. Daimon and A. Masumura, "High-accuracy measurements of the refractive index and its temperature coefficient of calcium fluoride in a wide wavelength range from 138 to 2326 nm," Appl. Opt. 41, 5275-81 (2002). https://doi.org/10.1364/AO.41.005275
- G. Wyszecki and W. S. Stiles, Color Science 2nd Edition (John Wiley & Sons, New York, 1982), pp. 257.
- A. C. Harris and I. L. Weatherall, "Objective evaluation of colour variation in the sandburrowing beetle chaerodes trachyscelides white (Coleoptera: Tenebrionidae) by instrumental determination of CIELAB values," J. R. Soc. New Zeal. 20, 253-259 (1990). https://doi.org/10.1080/03036758.1990.10416819
- H. S. Fairman, M. H. Brill, and H. Hemmendinger, "How the CIE 1931 color-matching functions were derived from Wright-Guild data," Color Res. Appl. 22, 11-23 (1997). https://doi.org/10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7
- W. S. Stiles and J. M. Burch, "N.P.L. Colour-matching investigation: Final report (1958)," Opt. Acta Int. J. Opt. 6, 1-26 (1959). https://doi.org/10.1080/713826267