DOI QR코드

DOI QR Code

Effect of Thermal Properties of Bentonite Buffer on Temperature Variation

벤토나이트 완충재의 열물성이 온도 변화에 미치는 영향

  • 김민준 (KAIST 건설 및 환경공학과) ;
  • 이승래 (KAIST 건설 및 환경공학과) ;
  • 윤석 (한국원자력연구원 방사성폐기물처분연구부) ;
  • 전준서 (KAIST 건설 및 환경공학과) ;
  • 김민섭 (KAIST 건설 및 환경공학과)
  • Received : 2017.11.01
  • Accepted : 2017.12.07
  • Published : 2018.01.31

Abstract

A buffer in a geological disposal system minimizes groundwater inflow from the surrounding rock and protects the disposed high-level waste (HLW) against any mechanical impact. As decay heat of a spent fuel causes temperature variation in the buffer that affects the mechanical performance of the system, an accurate estimation of the temperature variation is substantial. The temperature variation is affected by thermal and material properties of the system such as thermal conductivity, density and specific heat capacity of the buffer, and thus these factors should be properly included in the design of the system. In particular, as the thermal properties are variable depending on the density and water content of the buffer, consideration of the effects should be included in the analysis. Hence, in this study, a numerical model based on finite element method (FEM) which is able to consider the change of density and water content of the buffer was established. In addition, using the numerical model, a parametric study was conducted to investigate the effect of each thermal property on the temperature variation of the buffer.

심층 처분시설에서 완충재는 지하수의 유입을 최소화하며, 역학적인 충격을 흡수하는 중요한 역할을 한다. 사용후 핵연료로부터 발생하는 붕괴열은 완충재의 온도를 변화시켜 역학적 성능에 큰 영향을 미치기 때문에 완충재 온도변화에 대한 정확한 예측이 필요하다. 이러한 온도 변화는 완충재의 열물성인 열전도도, 밀도, 비열에 영향을 받으며, 이에 대한 영향이 심층 처분시설의 열 해석에 고려되어야 한다. 특히 이들 열물성은 벤토나이트 완충재의 밀도와 함수비에 따라 변화하기 때문에 이에 대한 영향이 해석에 포함되어야한다. 따라서 본 연구에서는 완충재의 밀도와 함수비 변화 영향을 고려할 수 있는 유한요소법 기반의 열 해석 수치모델을 설정하였다. 또한 수치모델을 바탕으로 매개 변수 연구를 수행하여 각각의 열물성이 완충재의 온도 변화에 미치는 영향에 대해 살펴보았다.

Keywords

References

  1. Comsol Inc. (2016), "Comsol Multiphysics user's manual Ver. COMSOL 5.2a", USA.
  2. Cote, J. and Konrad, J. M. (2005), "A Generalized Thermal Conductivity Model for Soils and Construction Materials", Canadian Geotechnical Journal, Vol.42, No.2, pp.443-458. https://doi.org/10.1139/t04-106
  3. Cho, W. J. and Kim, G. Y. (2016), "Reconsideration of Thermal Criteria for Korean Spent Fuel Repository", Annals of Nuclear Energy, Vol.88, pp.73-82. https://doi.org/10.1016/j.anucene.2015.09.012
  4. Cho, W. J., Lee, J. W., and Chun, K. S. (1999), "Basic Physicochemical and Mechanical Properties of Domestic Bentonite for Use as a Buffer Material in a High-level Radioactive Waste Repository", Journal of the Korean Nuclear Society, Vol.31, No.6, pp.39-50.
  5. Go, G. H., Lee. S. R., and Kim, Y. S. (2016), "A Reliable Model to Predict Thermal Conductivity of Unsaturated Weathered Granite Soils", International Communications in Heat and Mass Transfer, Vol.74, pp.82-90. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.009
  6. JNC (1999), "H12 Project to establish technical basis for HLW disposal in Japan", Supporting Report 2, Japan Nuclear Cycle Development Institute, Japan.
  7. Johansen, O. (1975), "Thermal Conductivity of Soils", University of Trondheim, Ph.D. Thesis.
  8. Kersten, M.S. (1949), "Laboratory Research for the Determination of the Thermal Properties of Soils", Arctic construction and frost effects laboratory, Technical Report 23.
  9. Knutsson, S. (1983), "On the Thermal Conductivity and Thermal Diffusivity of Highly Compacted Bentonite", SKR Technical Report 83-72.
  10. Lee, J. H., Lee, M. S., Choi, H. J., and Choi, J. W. (2010), "Temperature Effect on the Swelling Pressure of a Domestic Compacted Bentonite Buffer", Journal of the Korean Radioactive Waste Society, Vol.8, No.3, pp.207-213.
  11. Lee, J. O., Cho, W. J., and Kwon, S. (2011a), "Thermal-hydromechanical Properties of Reference Bentonite Buffer for a Korean HLW Repository", Tunnel and Underground Space, Vol.21, No.4, pp.264-273.
  12. Lee, J. W., Brich, K., and Choi, H. J. (2014), "Coupled Hydro Analysis of Unsaturated Buffer and Backfill in a High-level Waste Repository", Annals of Nuclear Energy, Vol.72, pp.63-75.
  13. Lee, J. Y., Cho, D. K., Choi, H. J., Choi, J. W., and Wang, L. M. (2011b), "Analysis of Disposal Efficiency based on Nuclear Spent Fuel Cooling Time and Disposal Tunnel/pit Spacing for the Design of a Geological Repository", Progress in Nuclear Energy, Vol.53, pp.361-367. https://doi.org/10.1016/j.pnucene.2011.01.005
  14. Villar, M. V. (2004), "Thermo-hydro-mechanical Characteristics and Processes in the Clay Barrier of a High Level Radioactive Waste Repository", State of the art report.
  15. Yoon, S., Lee, M. S., Kim, G. Y., Lee, S. R., and Kim, M. J. (2017), "A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository", Journal of the Korean Geotechnical Society, Vol.33, No.4, pp.55-64.
  16. Yoon, S., Kim, G. Y., and Baik, M. H. (2017), "A Prediction of Specific Heat Capacity for Compacted Bentonite Buffer", Journal of Nuclear Fuel Cycle and Waste Technology, Vol.15, No.3, pp. 199-206. https://doi.org/10.7733/jnfcwt.2017.15.3.199

Cited by

  1. 고준위폐기물처분장 공학적방벽의 갭 공간이 미치는 영향 분석 vol.37, pp.4, 2021, https://doi.org/10.7843/kgs.2021.37.4.19
  2. 고준위방사성폐기물 처분장 내 열-수리-역학-화학적 복합거동 해석을 위한 국제공동연구 DECOVALEX-2023에서 수행 중인 연구 과제 소개 vol.31, pp.3, 2018, https://doi.org/10.7474/tus.2021.31.3.167