DOI QR코드

DOI QR Code

Geosmin and Morphological Characteristics of Anabaena circinalis, Obtained from the Bukhan River

북한강에서 출현한 Anabaena circinalis의 형태학적 특성 및 지오스민(geosmin) 발생 양상

  • Youn, Seok Jea (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Yong-Jin (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Hun Nyun (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Jin-Yong (Green tech) ;
  • Yu, Mi-Na (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Lee, Eun Jeong (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Yu, Soon Ju (Han River Environment Research Center, National Institute of Environmental Research)
  • 윤석제 (국립환경과학원 한강물환경연구소) ;
  • 김용진 (국립환경과학원 한강물환경연구소) ;
  • 김헌년 (국립환경과학원 한강물환경연구소) ;
  • 김진용 (그린텍) ;
  • 유미나 (국립환경과학원 한강물환경연구소) ;
  • 이은정 (국립환경과학원 한강물환경연구소) ;
  • 유순주 (국립환경과학원 한강물환경연구소)
  • Received : 2017.10.26
  • Accepted : 2017.12.18
  • Published : 2018.01.31

Abstract

This study was carried out in the Bukhan River in the summer of 2014 and 2015, to identify the relationship between geosmin and the morphological changes in Anabaena. Identification of Anabaena was conducted using morphological and molecular analyses. Anabaena in this study was similar to Anabaena circinalis, A. crass, and A. spiroides with regard to regular coils, vegetative cell, akinete shape, and size, hoever, it was distinguishabl from A. crass and A. spiroides because of its larger trichome coil size. Additionally, the sequences of phycocyanin (PC) gene from Anabaena showed a 99% genetic similarity with A. circinalis NIES-1647 strain. The coil diameter of trichome ranged from 106 to $899{\mu}m$, and the diameter and abundance showed an insignificant positive correlation (r=0.544, p<0.05). The result of relationship between the coil diameter and the cell number per 360-degree rotation was kept at $33.8{\pm}5.2$ cells per $100{\mu}m$ diameter despite variable diameter. The average geosmin concentrations in 2014 and 2015 were investigated to be 99 ng/L and 35 ng/L, respectively. A. circinalis cell density contributed considerably to the change in geosmin and was positively correlated with geosmin concentration (2014; r=0.599, p<0.01, 2015; r=0.559, p<0.01). Our results suggest that geosmin and coil diameter could be estimated with the help of cell density.

Keywords

References

  1. Armbrust, E. V., Sallie, W. C., 1992, Patterns of cell size change in a marine centric diatom: Variability evolving from clonal isolates, J. Phycol., 28(2), 146-156. https://doi.org/10.1111/j.0022-3646.1992.00146.x
  2. Berrendero, E., Perona, E., Mateo, P., 2008, Genetic and morphological characterization of Rivularia and Calothrix (Nostocales, Cyanobacteria) from running water, Int. J. Syst. Evol. Microbiol., 58(2), 447-460. https://doi.org/10.1099/ijs.0.65273-0
  3. Chorus, I., Bartram, J., 1999, Toxic cyanobacteria in water-a guide to their public health consequences, monitoring and management, E & FN Spon, London, England.
  4. Chung, J., 1993, Illustration of the freshwater algae of Korea, Academy Publishing Company, Seoul.
  5. Doers, M. P., Parker, D. L., 1988, Properties of Microcystis aeruginosa and M. flos-aquae (cyanobacteria) in culture: Taxonomic implications, J. Phycol., 24(4), 502-508. https://doi.org/10.1111/j.1529-8817.1988.tb00098.x
  6. Dokulil, M. T., Donabaum, K., Teubner, K., 2007, Modifications in phytoplankton size structure by environmental constraints induced by regime shifts in an urban lake, Hydrobiologia, 578(1), 59-63. https://doi.org/10.1007/s10750-006-0433-4
  7. Fergusson, K. M., Saint, C. P., 2000, Molecular phylogeny of Anabaena circinalis and its identification in environmental samples by PCR, Appl. Environ. Microbiol., 66(9), 4145-4148. https://doi.org/10.1128/AEM.66.9.4145-4148.2000
  8. Glazer, A. N., 1984, Phycobilisome a macromolecular complex optimized for light energy transfer, Biochim. Biophys. Acta, 768(1), 29-51. https://doi.org/10.1016/0304-4173(84)90006-5
  9. Guo, L., 2007, Ecology doing battle with the green monster of Taihu Lake, Science, 317(5842), 1166. https://doi.org/10.1126/science.317.5842.1166
  10. Han River Watershed and Environment Management District(HRWEMD), 2013, Distribution and eco-physiological characteristics of harmful algae in the North Han River, Final report.
  11. Izauirre, G., Hwang, C. J., Krasner, S. W., McGuire, M. J., 1982, Geosmin and 2-methylisoborneol from cyanobacteria in three water supply systems, Appl. Environ. Microbiol., 43(3), 708-714.
  12. John, D. M., Whitton, B. A., Brook, A. J., 2002, The freshwater algal flora of the british isles, Cambridge University Press, Cambridge, UK.
  13. Juttner, F., Watson, S. B., 2007, Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters, Appl. Environ. Microbiol., 73(14), 4395-4406. https://doi.org/10.1128/AEM.02250-06
  14. Ki, J. S., 2010, Divergence anlysis of 16S rRNA and rpoB genesequences revealed from the harmful cyanobacterium Microcystis aeruginosa, Korean J. Microbiol., 46(3), 296-302.
  15. Kim, H. B., Park, H. K., Shin, K. D., Moon, J. S., 2010, The characteristics of toxin production in the Korean toxic cyanobacteria, J. Korean Soc. Water Environ., 26(5), 834-840.
  16. Kim, K. H., Lim, B. J., You, K. A., Park, M. H., Park, J. H., Kim, B. H., Hwang, S. J., 2014, Identification and analysis of geosmin production potential of Anabaena stain isolated from North Han River using genetic methods, Korea J. Ecol. Environ., 47(4), 342-349. https://doi.org/10.11614/KSL.2014.47.4.342
  17. Komarek, J., 2013, Cyanoprokaryota. 2013. 3.Teil/Part 3: Heterocytous genera. In: Budel, B., Gartner, G., Krienitz, L., Schagerl, M. (eds.), Susswasserflora von Mitteleuropa freshwater flora of central Europe, Springer Spektrum, Berlin.
  18. Komarek, J., Zapomelova, E., 2007, Planktic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum - 1. part: coiled type., Fottea, 7(1), 1-31. https://doi.org/10.5507/fot.2007.001
  19. Li, R., Watanabe, M., Watanabe, M. M., 2000, Taxonomic studies of planktic species of Anabaena based on morphological characteristics in cultured strains, Hydrobiologia, 438(1-3), 117-138. https://doi.org/10.1023/A:1004170230774
  20. Li, Z., Han, M. S., Hwang, S. O., Byeon, M. S., Hwang, S. J., Kim, B. H., 2013, Molecular identification of the bloom-forming cyanobacterium Anabaena from North Han River system in summer 2012, Korea J. Ecol. Environ., 46(2), 301-309. https://doi.org/10.11614/KSL.2013.46.2.301
  21. Ma, Z., Xie, P., Chen, J., Niu, Y., Tao, M., Qi, M., Zhang, W., Deng, X., 2013, Microcystis blooms influencing volatile organic compounds concentrations in Lake Taihu, Fresenius Environ. Bull., 22(1), 95-102.
  22. Ministry Of Environment (MOE), 2011, Drinking water quality monitoring guideline.
  23. Miranda, M. D., Gaviano, M., Serra, E., 2005, Changes in the cell size of the diatom Cylindrotheca closterium in a hyperhaline pond, Chem. Ecol., 21(1), 77-81. https://doi.org/10.1080/02757540512331323962
  24. Nagai, S., Imai, S., 1999, The effect of salinity on the size of initial cells during vegetative cell enlargement of Coscinodiscus wailesii (Bacillariophyceae) in culture, Diatom Research, 14(2), 337-342. https://doi.org/10.1080/0269249X.1999.9705475
  25. Neilan, B. A., Jacobs, D., Goodman, A. E., 1995, Genetic diversity and phylogeny of toxic cyanobacteria determined by DNApolymorphisms within the phycocyanin locus, Appl. Environ. Microbiol., 61(11), 3875-3883.
  26. Otsyka, S., Suda, S., Li, R., Matsumoto, S., Watanabe, M., 2000, Morphological variability of colonies of Microcystis morphospecies in culture, J. Gen. Appl. Microbiol., 46(1), 39-50. https://doi.org/10.2323/jgam.46.39
  27. Park, H. J., 2013, Study on harmful cyanobacteria and off-flavor production in Lake Paldang, M. S. Dissertation, Konkuk University, Seoul.
  28. Park, H. K., Kim, H. B., Lee, J. J., Lee, J. A., Lee, H. J., Park, J. H., Seo, J. K., Youn, S. J., Moon, J. S., 2011, Investigation of criterion on harmful algae alert system using correlation between cell numbers and cellular microcystins content of Korea toxic cyanobacteria, J. Korean Soc. Water Environ., 27(4), 491-498.
  29. Qin, B., Zhu, G., Gao, G., Zhang, Y., Li, W., Paerl, H. W., Camichael, W. W., 2010, A Drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management, Environ. Manage., 45(1), 105-112. https://doi.org/10.1007/s00267-009-9393-6
  30. Rapala, J., Sivonen, K., 1998, Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures, Microb. Ecol., 36(2), 181-192. https://doi.org/10.1007/s002489900105
  31. Reynolds, C. S., 2006, The ecology phytoplankton, Cambridge Univ, Press, London.
  32. Shafik, H. M., Voros, L., Sprober, P., Presing, M., Kovacs, A.W., 2003, Some special morphological features of Cylindrospermopsis raciborskii in batch and continuous cultures, Hydrobiologia, 506(1-3), 163-167. https://doi.org/10.1023/B:HYDR.0000008588.89048.70
  33. Smith, V. H., Sieber-Denliger, J., DeNoyelles, F., Campbell, S., Pan, S., Randtke, S. J., Blain, G. T., Strasser, V. A., 2002, Managing taste and odor problems in a eutrophic drinking water reservoir, Lake Reservoir Manage., 18(4), 319-323. https://doi.org/10.1080/07438140209353938
  34. Stulp, B. K., Stam, W. T., 1984, Growth and morphology of Anabaena strains (Cyanophyceae, Cyanobacteria) in cultures under different salinities, Eur. J. Phycol., 19(3), 281-286.
  35. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011, MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maxium parsimony methods, Mol. Biol. Evol., 28(10), 2731-2739. https://doi.org/10.1093/molbev/msr121
  36. Tsao, H. W., Michinaka, A., Yen, H. K., Giglio, S., Hobson, P., Monis, P., Lin, T. F., 2014, Monitoring of geosmin producing Anabaena circinalis using quantitative PCR, Water Res., 49(1), 416-425. https://doi.org/10.1016/j.watres.2013.10.028
  37. Walsby, A. E., Avery, A., 1996, Measurement of filamentous cyanobacteria by image analysis, J. Microbiol. Methods, 26(1-2), 11-20. https://doi.org/10.1016/0167-7012(96)00816-0
  38. Wilmotte, A., 1988, Growth and morphological variability of six strains of Phormidium cf. ectocarpi Gomont (Cyanophyceae) cultivated under different temperatures and light intensities, Algol. Stud., 80(50-53), 35-46.
  39. Yamamoto, Y., Nakahara, H., 2009, Seasonal variations in the morphology of bloom-forming cyanobacteria in a eutrophic pond, Limnology, 10(3), 185-193. https://doi.org/10.1007/s10201-009-0270-z
  40. You, K. A., Byeon, M. S., Youn, S. J., Hwang, S. J., Rhew, D. H., 2013, Growth characteristics of blue-green algae(Anabaena spiroides) causing tastes and odors in the North-Han River, Korea, Korea J. Ecol. Environ., 46(1), 135-144. https://doi.org/10.11614/KSL.2013.46.1.135
  41. You, K. A., Song, M. A., Byeon, M. S., Lee, H. J., Hwang, S. J., 2014, The calculation method of cell count for the bloom-forming (green tide) cyanobacterium using correlation between colony area and cell number in Korea, Korea J. Ecol. Environ., 47(4), 350-357. https://doi.org/10.11614/KSL.2014.47.4.350
  42. Zapomelova, E., Hisem, D., Rehakova, K., Hrouzek, P., Jezberova, J., Komarkova, J., Korelusova, J., Znachor, P., 2008, Experimental comparison of phenotypical plasticity and growth demands of two strains from the Anabaena circinalis/A. crassa complex(cyanobacteria), J. Plankton Res., 30(11), 1257-1269. https://doi.org/10.1093/plankt/fbn081