DOI QR코드

DOI QR Code

A Study on the Meteorological Threshold of the Meteo-Tsunami Occurrence in the Yellow Sea, Korea

기상해일사례분석을 통한 기상해일발생 임계조건 도출

  • Choi, Yo-Hwan (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Hyunsu (Division of Environmental and Sustainability, The Hong Kong University of Science and Technology) ;
  • Woo, Seung-Buhm (Department of Oceanography, Inha University) ;
  • Kim, Myung-Seok (Department of Oceanography, Inha University) ;
  • Kim, Yoo-Keun (Department of Atmospheric Environmental Science, Pusan National University)
  • 최요환 (부산대학교 지구환경시스템학부) ;
  • 김현수 (홍콩과학기술대학교 환경과학부) ;
  • 우승범 (인하대학교 해양과학과) ;
  • 김명석 (인하대학교 해양과학과) ;
  • 김유근 (부산대학교 대기환경과학과)
  • Received : 2017.10.23
  • Accepted : 2017.12.19
  • Published : 2018.01.31

Abstract

Both the propagation velocity and the direction of atmospheric waves are important factors for analyzing and forecasting meteo-tsunami. In this study, a total of 14 events of meteo-tsunami over 11 years (2006-2016) are selected through analyzing sea-level data observed from tidal stations along the west coast of the Korean peninsula. The propagation velocity and direction are calculated by tracing the atmospheric disturbance of each meteo-tsunami event predicted by the WRF model. Then, the Froude number is calculated using the propagation velocity of atmospheric waves and oceanic long waves from bathymetry data. To derive the critical condition for the occurrence of meteo-tsunami, supervised learning using a logistic regression algorithm is conducted. It is concluded that the threshold distance of meteo-tsunami occurrence, from a propagation direction, can be calculated by the amplitude of air-pressure tendency and the resonance factor, which are found using the Froude number. According to the critical condition, the distance increases logarithmically with the ratio of the amplitude of air-pressure tendency and the square of the resonance factor, and meteo-tsunami do not occur when the ratio is less than 5.11 hPa/10 min.

Keywords

References

  1. Belusic, D., Grisogono, B., Klaic, Z. B., 2007, Atmospheric origin of the devastating coupled air - sea event in the east Adriatic, J. Geophys. Res., 112, D17111. doi:10.1029/2006JD008204
  2. Belusic, D., Strelec-Mahovic, N., 2009, Detecting and following atmospheric disturbances with a potential to generate meteotsunamis in the Adriatic, Phys. Chem. Earth, 34, 918 927. https://doi.org/10.1016/j.pce.2009.08.009
  3. Defant, A., 1961, Physical Oceanography, 2, Pergamon Press, Oxford, 598.
  4. Eom, H. M., Seung, Y. H., Woo, S. B., You, S. H., 2012, Analysis of abnormal wave at the west coast on 31 March 2007, Journal of Korean society of coastal ocean engineers, 24, 217-227.
  5. Kidder, S. Q., Vonder Haar, T. H., 1995, Satellite meteorology: An Introduction, Academic Press, San Diego, 466.
  6. Kim, H., Kim, Y. K., Woo, S. B., Kim, M. S., 2014, Atmospheric analysis on the meteo-tsunami case occurred on 31 March 2007 at the Yellow Sea of South Korea, Journal of Environmental Science International, 23, 1999-2014. https://doi.org/10.5322/JESI.2014.23.12.1999
  7. Kim, J. H., 2009, Estimating classification error rate: Repeated cross-validation, Repeated hold-out and bootstrap, Computational Statistics & Data Analysis, 53, 3735-3745. https://doi.org/10.1016/j.csda.2009.04.009
  8. Kohavi, R., 1995, A Study of cross-validation and bootstrap for accuracy estimation and model selection, International Joint Conference on Artificial Intelligence, 14, 1137-1143.
  9. Molinaro, A. M., Richard, S., Pfeiffer, R. M., 2005, Prediction error estimation: A Comparison of Resampling Methods, Bioinformatics, 21, 3301-3307. https://doi.org/10.1093/bioinformatics/bti499
  10. Monserrat, S., Vilibic, I., Rabinovich, A. B., 2006, Meteotsunamis: Atmospherically induced destructive ocean waves in the tsunami frequency band, Nat. Hazards Earth Syst. Sci., 6, 1035-1051. https://doi.org/10.5194/nhess-6-1035-2006
  11. Orlic, M., 1980, About a possible occurrence of the proudman resonance in the Adriatic. Thalassia Jugoslavica, 16, 79-88.
  12. Proudman, J., 1929, The effects on the sea of changes in atmospheric pressure, Geophys. Suppl. Mon. Not. R. Astron. Soc., 2, 197-209.
  13. Renault, L., Vizoso, G., Jansa, A., Wilkin, J., Tintore, J., 2011, Toward the predictability of meteotsunamis in the Balearic Sea using regional nested atmosphere and ocean models, Geophys. Res. Lett., 38, L10601. doi:10.1029/2011GL047361
  14. Sepic, J., Vilibic, I., Belusic, D., 2009, The source of the 2007 Ist meteotsunami (Adriatic Sea), J. Geophys. Res., 114, C03016. doi:10.1029/2008JC005092
  15. Tanaka, K., 2010, Atmospheric pressure-wave bands around a cold front resulted in a meteotsunami in the East China Sea in February 2009, Nat. Hazards Earth Syst. Sci., 10, 2599-2610. https://doi.org/10.5194/nhess-10-2599-2010
  16. Tintore, J., Gomis, D., Alonso, S., Wang, D. P., 1988, A Theoretical study of large sea level oscillations in the Western Mediterranean, J. Geophys. Res., 93, 10797-10803. https://doi.org/10.1029/JC093iC09p10797
  17. Torrence, C., Compo, G. P., 1998, A Practical guide to wavelet analysis, Bulletin of the American Meteorological Society, 79, 61-78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
  18. Vilibic, I., Horvath, K., Strelec-Mahovic, N., Monserrat, S., Marcos, M., Amores, A., Fine, I., 2014, Atmospheric processes responsible for generation of the 2008 Boothbay meteotsunami, Nat. Hazards, 74, 25-53. doi:10.1007/s11069-013-0811-y
  19. Vilibic, I., Monserrat, S., Rabinovich, A. B., Mihanovic, H., 2008, Numerical modelling of a destructive meteotsunami of 15 June, 2006 on the coast of the Balearic Islands. Pure and Applied Geophysics, 165, 2169-2195. https://doi.org/10.1007/s00024-008-0426-5