DOI QR코드

DOI QR Code

폴리머 용액법에 의한 In2O3 첨가 나노 WO3 분말 합성 및 NO2 가스 센서 특성

NO2 Gas Sensing Properties of Nano-Sized In2O3 Doped WO3 Powders Prepared from Polymer Solution Route

  • 김동민 (국립목포대학교 신소재공학과) ;
  • 이상진 (국립목포대학교 신소재공학과)
  • Kim, Dong Min (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Sang-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 투고 : 2017.10.22
  • 심사 : 2017.11.13
  • 발행 : 2018.01.27

초록

$In_2O_3$ doped $WO_3$ powders were prepared by a polymer solution route and their $NO_2$ gas sensing properties were analyzed. The synthesized powders showed nano-sized particles with specific surface areas of $6.01{\sim}21.5m^2/g$ and the particle size and shape changed according to the content of $In_2O_3$. The gas sensors fabricated with the synthesized powders were tested at operating temperatures of $400{\sim}500^{\circ}C$ and 100~500 ppm concentrations of $NO_2$ atmosphere. The particle size and $In_2O_3$ content affected on the initial sensor resistance in an air atmosphere. The highest sensitivity (8.57 at $500^{\circ}C$), which was 1.77 higher than the sensor consisting of the pure $WO_3$ sample, was measured in the 0.5 mol% $In_2O_3$ doping sample. In addition, the response time and recovery time were improved by the addition of $In_2O_3$.

키워드

참고문헌

  1. H. Long, W. Zeng and H. Zhang, J. Mater. Sci. Mater. Electron, 26, 4698 (2015). https://doi.org/10.1007/s10854-015-2896-4
  2. D. Chen, X. Hou, T. Li, L. Yin, B. Fan, H. Wang, X. Li, H. Xu, H. Lu, R. Zhang and J. Sun, Sens. Actuators B: Chem., 153, 373 (2011). https://doi.org/10.1016/j.snb.2010.11.001
  3. R. Kumar, O. Al-Dossary, G. Kumar and A. Umar, Nano-Micro. Lett., 7, 97 (2015). https://doi.org/10.1007/s40820-014-0023-3
  4. T. Hyodo, N. Nishida, Y. Shimizu and M. Egashira, Sens. Actuators B: Chem., 83, 209 (2002). https://doi.org/10.1016/S0925-4005(01)01042-5
  5. J. K. Choi, P. S. Cho and J. H. Lee, Korean J. Mater. Res., 18, 193 (2008). https://doi.org/10.3740/MRSK.2008.18.4.193
  6. M. Ivanovskaya, A. Gurlo and P. Bogdanov, Sens. Actuators B, 77, 264 (2001). https://doi.org/10.1016/S0925-4005(01)00708-0
  7. H. Yamaura, T. Jinkawa, J, Tamaki, K. Moriya, N. Miura and N. Yamazoe, Sens. Actuators B, 36, 325 (1996).
  8. C. M. Hussain and B. Kharisov, Advanced Environmental Analysis: Application of Nanomaterials, p 48-75., Royal Society of Chemistry, English (2016).
  9. G, Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, Crit. Rev. Solid State, 29, 111 (2004). https://doi.org/10.1080/10408430490888977
  10. H. J. Kim and J. H. Lee, Sens. Actuators B, 192, 607(2014). https://doi.org/10.1016/j.snb.2013.11.005
  11. M. C. Pantilimon, T. S. Kang and S. J. Lee, Sci. Adv. Mater., 9, 280 (2017). https://doi.org/10.1166/sam.2017.2563
  12. A. P. Richard and D. D. Edwards, J. Solid State Chem., 177, 2740 (2004). https://doi.org/10.1016/j.jssc.2004.04.015
  13. C. Feng, X. Li, J. Ma, Y. Sun, C. Wang, P. Sun, J. Zheng and G. Lu, Sens. Actuators B, 290, 622 (2015).
  14. L. Yin, D. Chen, M. Hu, H. Shi, D. Yang, B. Fan, G. Shao, R. Zhang and G. Shao, J. Mater. Chem. A, 2, 18867 (2014). https://doi.org/10.1039/C4TA03426K
  15. X. Y. Xue, Z. H. Chen, C. H. Ma, L. L. Xing, Y. J. Chen, Y. G. Wang and T. H. Wang, J. Phys. Chem. C, 114, 3968 (2010). https://doi.org/10.1021/jp908343r
  16. S. Ju, F. Ishikawa, P. Chen, H. K. Chang, C. Zhou, Y. Ha, J. Liu, F. Antonio, T. J. Marks and D. B. Janes, Appl. Phys. Lett., 92, 222105 (2008). https://doi.org/10.1063/1.2937111
  17. A. Sharma, M. Tomar and V. Gupta, Sens. Actuators B, 17, 675 (2013).
  18. J. Deng, B. Yu, Z. Lou, L. Wang, R. Wang and T. Zhang, Sens. Actuators B, 184, 21 (2013). https://doi.org/10.1016/j.snb.2013.04.020