Rotation Invariant Local Directional Pattern을 이용한 텍스처 분류 방법

Texture Classification Using Rotation Invariant Local Directional Pattern

  • 이태환 (경희대학교 전자정보대학 컴퓨터 공학과) ;
  • 채옥삼 (경희대학교 전자정보대학 컴퓨터 공학과)
  • 투고 : 2017.09.15
  • 심사 : 2017.09.29
  • 발행 : 2017.09.30

초록

지역 패턴을 정확하게 부호화 하는 방법은 텍스처 분류 연구에 매우 중요한 요소다. 하지만 기존 널리 연구된 LBP기반 방법들은 잡음에 취약한 근본적인 문제점이 있다. 최근 표정인식 분야에서 에지반응 값과 방향 정보를 활용한 LDP방법이 제안되었다. LDP방법은 LBP보다 잡음에 강하고 더 많은 정보를 코드에 수용할 수 있는 장점이 있지만 텍스처 분류에 적용하기에는 치명적인 회전 변화에 민감한 단점이 있다. 본 논문에서는 LDP 방법에 회전 불변 특성을 결합하고 기존 LDP가 가지고 있던 부호 정보를 수용하지 않은 단점과 밝기 값 차이가 적은 영역에서 의미 없는 코드가 생성되는 단점을 극복한 새로운 지역 패턴 부호화 방법인 Rotation Invariant Local Directional Pattern 방법을 제안한다. 본 논문에서 제안된 방법의 텍스처 분류 성능을 입증하기 위해 널리 사용되는 UIUC, CUReT 데이터 셋에서 텍스처 분류를 수행했다. 그 결과 제안된 RILDP방법이 기존 방법보다 우수한 성능을 보여주었다.

Accurate encoding of local patterns is a very important factor in texture classification. However, LBP based methods w idely studied have fundamental problems that are vulnerable to noise. Recently, LDP method using edge response and dire ction information was proposed in facial expression recognition. LDP is more robust to noise than LBP and can accommod ate more information in it's pattern code, but it has drawbacks that it is sensitive to rotation transforms that are critical to texture classification. In this paper, we propose a new local pattern coding method called Rotation Invariant Local Direc tional Pattern, which combines rotation-invariant transform to LDP. To prove the texture classification performance of the proposed method in this paper, texture classification was performed on the widely used UIUC and CUReT datasets. As a result, the proposed RILDP method showed better performance than the existing methods.

키워드

참고문헌

  1. Davis, L. S. (1981). Polarograms: a new tool for image texture analysis. Pattern Recognition, 13(3), 219-223. https://doi.org/10.1016/0031-3203(81)90098-4
  2. Duvernoy, J. (1984). Optical-digital processing of directional terrain textures invariant under translation, rotation, and change of scale. Applied optics, 23(6), 828-837. https://doi.org/10.1364/AO.23.000828
  3. Goyal, R. K., Goh, W. L., Mital, D. P., & Chan, K. L. (1995, November). Scale and rotation invariant texture analysis based on structural property. In Industrial Electronics, Control, and Instrumentation, 1995., Proceedings of the 1995 IEEE IECON 21st International Conference on (Vol. 2, pp. 1290-1294). IEEE.
  4. Eichmann, G., & Kasparis, T. (1988). Topologically invariant texture descriptors. Computer vision, graphics, and image processing, 41(3), 267-281. https://doi.org/10.1016/0734-189X(88)90102-8
  5. Hanbay, K., Alpaslan, N., Talu, M. F., Hanbay, D., Karci, A., & Kocamaz, A. F. (2015). Continuous rotation invariant features for gradient-based texture classification. Computer Vision and Image Understanding, 132, 87-101. https://doi.org/10.1016/j.cviu.2014.10.004
  6. Kashyap, R. L., & Khotanzad, A. (1986). A model-based method for rotation invariant texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, (4), 472-481.
  7. Cohen, F. S., Fan, Z., & Patel, M. A. (1991). Classification of rotated and scaled textured images using Gaussian Markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(2), 192-202. https://doi.org/10.1109/34.67648
  8. Chen, J. L., & Kundu, A. (1994). Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(2), 208-214. https://doi.org/10.1109/34.273730
  9. Porter, R., & Canagarajah, N. (1997). Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes. IEE Proceedings-Vision, Image and Signal Processing, 144(3), 180-188. https://doi.org/10.1049/ip-vis:19971182
  10. Xu, Y., Ji, H., & Fermuller, C. (2006). A projective invariant for textures. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on (Vol. 2, pp. 1932-1939). IEEE.
  11. Haralick, R. M. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5), 786-804. https://doi.org/10.1109/PROC.1979.11328
  12. Varma, M., & Zisserman, A. (2003, June). Texture classification: Are filter banks necessary?. In Computer vision and pattern recognition, 2003. Proceedings. 2003 IEEE computer society conference on (Vol. 2, pp. II-691). IEEE.
  13. Liu, L., & Fieguth, P. (2012). Texture classification from random features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3), 574-586. https://doi.org/10.1109/TPAMI.2011.145
  14. Varma, M., & Zisserman, A. (2009). A statistical approach to material classification using image patch exemplars. IEEE transactions on pattern analysis and machine intelligence, 31(11), 2032-2047. https://doi.org/10.1109/TPAMI.2008.182
  15. Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. International Journal of Computer Vision, 62(1), 61-81. https://doi.org/10.1007/s11263-005-4635-4
  16. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on pattern analysis and machine intelligence, 24(7), 971-987. https://doi.org/10.1109/TPAMI.2002.1017623
  17. Liao, S., Law, M. W., & Chung, A. C. (2009). Dominant local binary patterns for texture classification. IEEE transactions on image processing, 18(5), 1107-1118. https://doi.org/10.1109/TIP.2009.2015682
  18. Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE transactions on image processing, 19(6), 1635-1650. https://doi.org/10.1109/TIP.2010.2042645
  19. Guo, Z., Zhang, L., & Zhang, D. (2010). A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing, 19(6), 1657-1663. https://doi.org/10.1109/TIP.2010.2044957
  20. Jabid, T., Kabir, M. H., & Chae, O. (2010). Robust facial expression recognition based on local directional pattern. ETRI journal, 32(5), 784-794. https://doi.org/10.4218/etrij.10.1510.0132
  21. W.K. Pratt, Digital Image Processing, Wiley, New York, pp. 489, 1978
  22. 류병용, 김재면, 안기옥, 송기훈, & 채옥삼. (2014). Signed Local Directional Pattern 을 이용한 강력한 얼굴 표정인식. 전자공학회논문지, 51(6), 89-101. https://doi.org/10.5573/IEIE.2014.51.6.089
  23. Zhao, Y., Huang, D. S., & Jia, W. (2012). Completed local binary count for rotation invariant texture classification. IEEE transactions on image processing, 21(10), 4492-4497. https://doi.org/10.1109/TIP.2012.2204271
  24. Lazebnik, S., Schmid, C., & Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1265-1278. https://doi.org/10.1109/TPAMI.2005.151
  25. Dana, K. J., Van Ginneken, B., Nayar, S. K., & Koenderink, J. J. (1999). Reflectance and texture of real-world surfaces. ACM Transactions On Graphics (TOG), 18(1), 1-34. https://doi.org/10.1145/300776.300778
  26. Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multiclass support vector machines. IEEE transactions on Neural Networks, 13(2), 415-425. https://doi.org/10.1109/72.991427