References
-
P. Briand, B. Delyon, Y. Hu, E. Pardoux, and L. Stoica,
$L^p$ solutions of backward stochastic differential equations, Stochastic Process. Appl. 108 (2003), 109-129. https://doi.org/10.1016/S0304-4149(03)00089-9 - P. Briand and R. Elie, A simple constructive approach to quadratic BSDEs with or without delay, Stochastic Process. Appl. 123 (2013), 2921-2939. https://doi.org/10.1016/j.spa.2013.02.013
- P. Briand and Y. Hu, Stability of BSDEs with random terminal time and homogenization of semilinear elliptic PDEs, J. Funct. Anal. 155 (1998), 455-494. https://doi.org/10.1006/jfan.1997.3229
- P. Briand, BSDE with quadratic growth and unbounded terminal value, Probab. Theory Related Fields 136 (2006), 604-618. https://doi.org/10.1007/s00440-006-0497-0
- P. Briand, Quadratic BSDEs with convex generators and unbounded terminal conditions, Probab. Theory Related Fields 141 (2008), 543-567. https://doi.org/10.1007/s00440-007-0093-y
- Z. Chen, Existence of solutions to backward stochastic differential equations with stopping time, Chinese Science Bulletin 42 (1997), no. 22, 2379-2383.
- Z. Chen and B. Wang, Innite time interval BSDEs and the convergence of gmartingales, J. Austral. Math. Soc. Ser. A 69 (2000), no. 2, 187-211. https://doi.org/10.1017/S1446788700002172
- F. Delbaen, Y. Hu, and A. Richou, On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions, Ann. Inst. Henri Poincare Probab. Stat. 47 (2011), no. 2, 559-574. https://doi.org/10.1214/10-AIHP372
- F. Delbaen, On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions: the critical case, Discrete Contin. Dyn. Sys. 35 (2015), no. 11, 5273-5283. https://doi.org/10.3934/dcds.2015.35.5273
-
S. Fan, Bounded solutions,
$L^p$ (p > 1) solutions and$L^1$ solutions for one-dimensional BSDEs under general assumptions, Stochastic Process. Appl. 126 (2016), 1511-1552. https://doi.org/10.1016/j.spa.2015.11.012 - Y. Hu, P. Imkeller, and M. Muller, Utility maximization in incomplete markets, Ann. Appl. Probab. 15 (2005), no. 3, 1691-1712. https://doi.org/10.1214/105051605000000188
- Y. Hu and S. Tang, Multi-dimensional backward stochastic differential equations of diagonally quadratic generators, Stochastic Process. Appl. 126 (2015), no. 4, 1066-1086.
- N. Kazamaki, Continuous exponential martingals and BMO, Lecture Notes in Math. 1579, Springer, Berlin, 1994.
- M. Kobylanski, Backward stochastic differential equations and partial differential equations with quadratic growth, Ann. Probab. 28 (2000), no. 2, 558-602. https://doi.org/10.1214/aop/1019160253
- J. Lepeltier and J. San Martn, Backward stochastic differential equations with continuous coefficient, Statist. Probab. Lett. 32 (1997), no. 4, 425-430. https://doi.org/10.1016/S0167-7152(96)00103-4
- J. Lepeltier, Existence for BSDE with superlinear-quadratic coefficient, Stochastics 63 (1998), no. 3-4, 227-240.
-
Y. Liu, D. Li, and S. Fan,
$L^p$ (p > 1) solutions of BSDEs with generators satisfying some non-uniform conditions in t and${\omega}$ , arXiv: 1603.00259v1 [math. PR](2016). - E. Pardoux and S. Peng, Adapted solution of a backward stochastic differential equations, Systems Control Lett. 14 (1990), no. 1, 55-61. https://doi.org/10.1016/0167-6911(90)90082-6
-
L. Xiao, S. Fan, and N. Xu,
$L^p$ solution of multidimensional BSDEs with monotone generators in the general time intervals, Stoch. Dyn. 14 (2015), 55-61.