DOI QR코드

DOI QR Code

A CHARACTERIZATION OF THE HYPERBOLIC DISC AMONG CONSTANT WIDTH BODIES

  • Jeronimo-Castro, Jesus (Facultad de Ingenieria Universidad Autonoma de Queretaro) ;
  • Jimenez-Lopez, Francisco G. (Facultad de Ingenieria Universidad Autonoma de Queretaro)
  • Received : 2016.08.31
  • Accepted : 2017.02.13
  • Published : 2017.11.30

Abstract

In this paper we prove a condition under which a hyperbolic starshaped set has a center of hyperbolic symmetry. We also give the definition of isometric diameters for a hyperbolic convex set, which behave similar to affine diameters for Euclidean convex sets. Using this concept, we give a definition of constant hyperbolic width and we prove that the only hyperbolic sets with constant hyperbolic width and with a hyperbolic center of symmetry are hyperbolic discs.

Keywords

References

  1. A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, Berlin Heidelberg New York, 1995.
  2. G. D. Chakerian and H. Groemer, Convex bodies of constant width, Convexity and its Applications, Eds. P. M. Gruber and J. M. Wills, Birkhauser, Basel, 1983.
  3. B. V. Dekster, Double normals characterize bodies of constant width in Riemannian manifolds, Geometric analysis and nonlinear partial differential equations (Denton, TX, 1990), 187-201, Lecture Notes in Pure and Appl. Math., 144, Dekker, New York, 1993.
  4. P. C. Hammer, Diameters of convex bodies, Proc. Amer. Math. Soc. 5 (1954), 304-306. https://doi.org/10.1090/S0002-9939-1954-0061398-1
  5. J. Fillmore, Barbier's theorem in the Lobachevsky plane, Proc. Amer. Math. Soc. 24 (1970), 705-709.
  6. J. Jeronimo-Castro and E. Roldan-Pensado, A characteristic property of the Euclidean disc, Period. Math. Hungar. 59 (2009), no. 2, 213-222. https://doi.org/10.1007/s10998-009-0213-9
  7. J. Jeronimo-Castro, G. Ruiz-Hernandez, and S. Tabachnikov, The equal tangents property, Adv. Geom. 14 (2014), no. 3, 447-453.
  8. K. Leichtweiss, Curves of constant width in the non-Euclidean geometry, Abh. Math. Sem. Univ. Hamburg 75 (2005), 257-284. https://doi.org/10.1007/BF02942046
  9. H. Rademacher and O. Toeplitz, The Enjoyment of Mathematics, Princeton University Press, 1957.
  10. V. A. Toponogov, Differential Geometry of Curves and Surfaces, a Concise Guide, Birkhauser, Boston-Basel-Berlin, 2006.
  11. L. A. Santalo, Note on convex curves in the hyperbolic plane, Bull. Amer. Math. Soc. 51 (1945), 405-412. https://doi.org/10.1090/S0002-9904-1945-08366-9
  12. L. A. Santalo, Convexity in the hyperbolic plane, Univ. Nac. Tucuman Rev. Ser. A 19 (1969), 173-183.
  13. I. Yaglom and V. Boltyanski, Convex Figures, Holt Rinehart and Winston, New York, 1961.