References
- A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, Berlin Heidelberg New York, 1995.
- G. D. Chakerian and H. Groemer, Convex bodies of constant width, Convexity and its Applications, Eds. P. M. Gruber and J. M. Wills, Birkhauser, Basel, 1983.
- B. V. Dekster, Double normals characterize bodies of constant width in Riemannian manifolds, Geometric analysis and nonlinear partial differential equations (Denton, TX, 1990), 187-201, Lecture Notes in Pure and Appl. Math., 144, Dekker, New York, 1993.
- P. C. Hammer, Diameters of convex bodies, Proc. Amer. Math. Soc. 5 (1954), 304-306. https://doi.org/10.1090/S0002-9939-1954-0061398-1
- J. Fillmore, Barbier's theorem in the Lobachevsky plane, Proc. Amer. Math. Soc. 24 (1970), 705-709.
- J. Jeronimo-Castro and E. Roldan-Pensado, A characteristic property of the Euclidean disc, Period. Math. Hungar. 59 (2009), no. 2, 213-222. https://doi.org/10.1007/s10998-009-0213-9
- J. Jeronimo-Castro, G. Ruiz-Hernandez, and S. Tabachnikov, The equal tangents property, Adv. Geom. 14 (2014), no. 3, 447-453.
- K. Leichtweiss, Curves of constant width in the non-Euclidean geometry, Abh. Math. Sem. Univ. Hamburg 75 (2005), 257-284. https://doi.org/10.1007/BF02942046
- H. Rademacher and O. Toeplitz, The Enjoyment of Mathematics, Princeton University Press, 1957.
- V. A. Toponogov, Differential Geometry of Curves and Surfaces, a Concise Guide, Birkhauser, Boston-Basel-Berlin, 2006.
- L. A. Santalo, Note on convex curves in the hyperbolic plane, Bull. Amer. Math. Soc. 51 (1945), 405-412. https://doi.org/10.1090/S0002-9904-1945-08366-9
- L. A. Santalo, Convexity in the hyperbolic plane, Univ. Nac. Tucuman Rev. Ser. A 19 (1969), 173-183.
- I. Yaglom and V. Boltyanski, Convex Figures, Holt Rinehart and Winston, New York, 1961.