DOI QR코드

DOI QR Code

Rules for functional microRNA targeting

  • Kim, Doyeon (Center for RNA Research, Institute for Basic Science, Seoul National University) ;
  • Chang, Hee Ryung (Center for RNA Research, Institute for Basic Science, Seoul National University) ;
  • Baek, Daehyun (Center for RNA Research, Institute for Basic Science, Seoul National University)
  • Received : 2017.09.06
  • Published : 2017.11.30

Abstract

MicroRNAs (miRNAs) are ~22nt-long single-stranded RNA molecules that form a RNA-induced silencing complex with Argonaute (AGO) protein to post-transcriptionally downregulate their target messenger RNAs (mRNAs). To understand the regulatory mechanisms of miRNA, discovering the underlying functional rules for how miRNAs recognize and repress their target mRNAs is of utmost importance. To determine functional miRNA targeting rules, previous studies extensively utilized various methods including high-throughput biochemical assays and bioinformatics analyses. However, targeting rules reported in one study often fail to be reproduced in other studies and therefore the general rules for functional miRNA targeting remain elusive. In this review, we evaluate previously-reported miRNA targeting rules and discuss the biological impact of the functional miRNAs on gene-regulatory networks as well as the future direction of miRNA targeting research.

Keywords

References

  1. Friedman RC, Farh KKH, Burge CB and Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105
  2. Bartel DP (2009) MicroRNAs: Target recognition and regulatory functions. Cell 136, 215-233 https://doi.org/10.1016/j.cell.2009.01.002
  3. Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773 https://doi.org/10.1038/nature03315
  4. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63 https://doi.org/10.1038/nature07228
  5. Kasinski AL and Slack FJ (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11, 849-864 https://doi.org/10.1038/nrc3166
  6. Melo SA and Kalluri R (2013) miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol 15, 139-140 https://doi.org/10.1038/ncb2684
  7. Babar IA, Cheng CJ, Booth CJ et al (2012) Nanoparticlebased therapy in an in vivo microRNA-155 (miR-155)- dependent mouse model of lymphoma. Proc Nat Acad Sci U S A 109, E1695-1704 https://doi.org/10.1073/pnas.1201516109
  8. Baltimore D, Boldin MP, O'Connell RM, Rao DS and Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9, 839-845 https://doi.org/10.1038/ni.f.209
  9. Cheng CJ, Bahal R, Babar IA et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107-110 https://doi.org/10.1038/nature13905
  10. Costinean S, Zanesi N, Pekarsky Y et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Nat Acad Sci U S A 103, 7024-7029 https://doi.org/10.1073/pnas.0602266103
  11. Lewis BP, Burge CB and Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20 https://doi.org/10.1016/j.cell.2004.12.035
  12. Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817-1821 https://doi.org/10.1126/science.1121158
  13. Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37, 495-500 https://doi.org/10.1038/ng1536
  14. Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP and Bartel DP (2007) MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 27, 91-105 https://doi.org/10.1016/j.molcel.2007.06.017
  15. Baek D, Villen J, Shin C, Camargo FD, Gygi SP and Bartel DP (2008) The impact of microRNAs on protein output. Nature 455, 64-71 https://doi.org/10.1038/nature07242
  16. Brennecke J, Stark A, Russell RB and Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3, e85 https://doi.org/10.1371/journal.pbio.0030085
  17. Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J and Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894-1910 https://doi.org/10.1261/rna.768207
  18. Guo H, Ingolia NT, Weissman JS and Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840 https://doi.org/10.1038/nature09267
  19. Schirle NT, Sheu-Gruttadauria J and MacRae IJ (2014) Gene regulation. Structural basis for microRNA targeting. Science 346, 608-613 https://doi.org/10.1126/science.1258040
  20. Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ and Joo C (2015) A dynamic search process underlies microRNA targeting. Cell 162, 96-107 https://doi.org/10.1016/j.cell.2015.06.032
  21. Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A and Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38, 789-802 https://doi.org/10.1016/j.molcel.2010.06.005
  22. Chi SW, Zang JB, Mele A and Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486 https://doi.org/10.1038/nature08170
  23. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M and Zavolan M (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8, 559-564 https://doi.org/10.1038/nmeth.1608
  24. Chi SW, Hannon GJ and Darnell RB (2012) An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19, 321-327 https://doi.org/10.1038/nsmb.2230
  25. Loeb GB, Khan AA, Canner D et al (2012) Transcriptomewide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48, 760-770 https://doi.org/10.1016/j.molcel.2012.10.002
  26. Hafner M, Landthaler M, Burger L et al (2010) PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins. Journal of visualized experiments : JoVE. J Vis Exp e2034
  27. Hafner M, Landthaler M, Burger L et al (2010) Transcriptomewide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129-141 https://doi.org/10.1016/j.cell.2010.03.009
  28. Corcoran DL, Georgiev S, Mukherjee N et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12, R79 https://doi.org/10.1186/gb-2011-12-8-r79
  29. Majoros WH, Lekprasert P, Mukherjee N et al (2013) MicroRNA target site identification by integrating sequence and binding information. Nat Methods 10, 630-633 https://doi.org/10.1038/nmeth.2489
  30. Konig J, Zarnack K, Luscombe NM and Ule J (2011) Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13, 77-83
  31. Gottwein E, Corcoran DL, Mukherjee N et al (2011) Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10, 515-526 https://doi.org/10.1016/j.chom.2011.09.012
  32. Leung AK, Young AG, Bhutkar A et al (2011) Genomewide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 18, 237-244 https://doi.org/10.1038/nsmb.1991
  33. Skalsky RL, Corcoran DL, Gottwein E et al (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8, e1002484 https://doi.org/10.1371/journal.ppat.1002484
  34. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 https://doi.org/10.1016/S0092-8674(04)00045-5
  35. Gu S, Jin L, Zhang FJ, Sarnow P and Kay MA (2009) Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16, 144-150 https://doi.org/10.1038/nsmb.1552
  36. Kudla G, Granneman S, Hahn D, Beggs JD and Tollervey D (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Nat Acad Sci U S A 108, 10010-10015 https://doi.org/10.1073/pnas.1017386108
  37. Helwak A, Kudla G, Dudnakova T and Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654-665 https://doi.org/10.1016/j.cell.2013.03.043
  38. Khorshid M, Hausser J, Zavolan M and van Nimwegen E (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods 10, 253-255 https://doi.org/10.1038/nmeth.2341
  39. Stern-Ginossar N, Elefant N, Zimmermann A et al (2007) Host immune system gene targeting by a viral miRNA. Science 317, 376-381 https://doi.org/10.1126/science.1140956
  40. Lin HR and Ganem D (2011) Viral microRNA target allows insight into the role of translation in governing microRNA target accessibility. Proc Nat Acad Sci U S A 108, 5148-5153 https://doi.org/10.1073/pnas.1102033108
  41. Agarwal V, Bell GW, Nam JW and Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, e05005
  42. Kim D, Sung YM, Park J et al (2016) General rules for functional microRNA targeting. Nat Genetics 48, 1517-1526 https://doi.org/10.1038/ng.3694
  43. Ui-Tei K, Naito Y, Nishi K, Juni A and Saigo K (2008) Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 36, 7100-7109 https://doi.org/10.1093/nar/gkn902
  44. Arvey A, Larsson E, Sander C, Leslie CS and Marks DS (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6, 363
  45. Garcia DM, Baek D, Shin C, Bell GW, Grimson A and Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18, 1139-1146 https://doi.org/10.1038/nsmb.2115
  46. Didiano D and Hobert O (2006) Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol 13, 849-851 https://doi.org/10.1038/nsmb1138
  47. Xia T, SantaLucia J Jr, Burkard ME et al (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37, 14719-14735 https://doi.org/10.1021/bi9809425
  48. Kim D, Kim J and Baek D (2014) Global and Local Competition between Exogenously Introduced microRNAs and Endogenously Expressed microRNAs. Mol Cells 37, 412-417 https://doi.org/10.14348/molcells.2014.0100
  49. van Kouwenhove M, Kedde M and Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11, 644-656 https://doi.org/10.1038/nrc3107
  50. Triboulet R and Gregory RI (2010) Pumilio turns on microRNA function. Nat Cell Biol 12, 928-929 https://doi.org/10.1038/ncb1010-928
  51. Bazzini AA, Lee MT and Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233-237 https://doi.org/10.1126/science.1215704
  52. Meijer HA, Kong YW, Lu WT et al (2013) Translational repression and eIF4A2 activity are critical for microRNAmediated gene regulation. Science 340, 82-85 https://doi.org/10.1126/science.1231197
  53. Jangra RK, Yi M and Lemon SM (2010) Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 84, 6615-6625 https://doi.org/10.1128/JVI.00417-10
  54. Moretti F, Thermann R and Hentze MW (2010) Mechanism of translational regulation by miR-2 from sites in the 5' untranslated region or the open reading frame. RNA 16, 2493-2502 https://doi.org/10.1261/rna.2384610