References
- Friedman RC, Farh KKH, Burge CB and Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105
- Bartel DP (2009) MicroRNAs: Target recognition and regulatory functions. Cell 136, 215-233 https://doi.org/10.1016/j.cell.2009.01.002
- Lim LP, Lau NC, Garrett-Engele P et al (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773 https://doi.org/10.1038/nature03315
- Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58-63 https://doi.org/10.1038/nature07228
- Kasinski AL and Slack FJ (2011) MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer 11, 849-864 https://doi.org/10.1038/nrc3166
- Melo SA and Kalluri R (2013) miR-29b moulds the tumour microenvironment to repress metastasis. Nat Cell Biol 15, 139-140 https://doi.org/10.1038/ncb2684
- Babar IA, Cheng CJ, Booth CJ et al (2012) Nanoparticlebased therapy in an in vivo microRNA-155 (miR-155)- dependent mouse model of lymphoma. Proc Nat Acad Sci U S A 109, E1695-1704 https://doi.org/10.1073/pnas.1201516109
- Baltimore D, Boldin MP, O'Connell RM, Rao DS and Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9, 839-845 https://doi.org/10.1038/ni.f.209
- Cheng CJ, Bahal R, Babar IA et al (2015) MicroRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature 518, 107-110 https://doi.org/10.1038/nature13905
- Costinean S, Zanesi N, Pekarsky Y et al (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Nat Acad Sci U S A 103, 7024-7029 https://doi.org/10.1073/pnas.0602266103
- Lewis BP, Burge CB and Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15-20 https://doi.org/10.1016/j.cell.2004.12.035
- Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817-1821 https://doi.org/10.1126/science.1121158
- Krek A, Grun D, Poy MN et al (2005) Combinatorial microRNA target predictions. Nat Genet 37, 495-500 https://doi.org/10.1038/ng1536
- Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP and Bartel DP (2007) MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell 27, 91-105 https://doi.org/10.1016/j.molcel.2007.06.017
- Baek D, Villen J, Shin C, Camargo FD, Gygi SP and Bartel DP (2008) The impact of microRNAs on protein output. Nature 455, 64-71 https://doi.org/10.1038/nature07242
- Brennecke J, Stark A, Russell RB and Cohen SM (2005) Principles of microRNA-target recognition. PLoS Biol 3, e85 https://doi.org/10.1371/journal.pbio.0030085
- Nielsen CB, Shomron N, Sandberg R, Hornstein E, Kitzman J and Burge CB (2007) Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894-1910 https://doi.org/10.1261/rna.768207
- Guo H, Ingolia NT, Weissman JS and Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840 https://doi.org/10.1038/nature09267
- Schirle NT, Sheu-Gruttadauria J and MacRae IJ (2014) Gene regulation. Structural basis for microRNA targeting. Science 346, 608-613 https://doi.org/10.1126/science.1258040
- Chandradoss SD, Schirle NT, Szczepaniak M, MacRae IJ and Joo C (2015) A dynamic search process underlies microRNA targeting. Cell 162, 96-107 https://doi.org/10.1016/j.cell.2015.06.032
- Shin C, Nam JW, Farh KK, Chiang HR, Shkumatava A and Bartel DP (2010) Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell 38, 789-802 https://doi.org/10.1016/j.molcel.2010.06.005
- Chi SW, Zang JB, Mele A and Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460, 479-486 https://doi.org/10.1038/nature08170
- Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M and Zavolan M (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8, 559-564 https://doi.org/10.1038/nmeth.1608
- Chi SW, Hannon GJ and Darnell RB (2012) An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19, 321-327 https://doi.org/10.1038/nsmb.2230
- Loeb GB, Khan AA, Canner D et al (2012) Transcriptomewide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48, 760-770 https://doi.org/10.1016/j.molcel.2012.10.002
- Hafner M, Landthaler M, Burger L et al (2010) PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins. Journal of visualized experiments : JoVE. J Vis Exp e2034
- Hafner M, Landthaler M, Burger L et al (2010) Transcriptomewide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129-141 https://doi.org/10.1016/j.cell.2010.03.009
- Corcoran DL, Georgiev S, Mukherjee N et al (2011) PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data. Genome Biol 12, R79 https://doi.org/10.1186/gb-2011-12-8-r79
- Majoros WH, Lekprasert P, Mukherjee N et al (2013) MicroRNA target site identification by integrating sequence and binding information. Nat Methods 10, 630-633 https://doi.org/10.1038/nmeth.2489
- Konig J, Zarnack K, Luscombe NM and Ule J (2011) Protein-RNA interactions: new genomic technologies and perspectives. Nat Rev Genet 13, 77-83
- Gottwein E, Corcoran DL, Mukherjee N et al (2011) Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 10, 515-526 https://doi.org/10.1016/j.chom.2011.09.012
- Leung AK, Young AG, Bhutkar A et al (2011) Genomewide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nat Struct Mol Biol 18, 237-244 https://doi.org/10.1038/nsmb.1991
- Skalsky RL, Corcoran DL, Gottwein E et al (2012) The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog 8, e1002484 https://doi.org/10.1371/journal.ppat.1002484
- Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 https://doi.org/10.1016/S0092-8674(04)00045-5
- Gu S, Jin L, Zhang FJ, Sarnow P and Kay MA (2009) Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. Nat Struct Mol Biol 16, 144-150 https://doi.org/10.1038/nsmb.1552
- Kudla G, Granneman S, Hahn D, Beggs JD and Tollervey D (2011) Cross-linking, ligation, and sequencing of hybrids reveals RNA-RNA interactions in yeast. Proc Nat Acad Sci U S A 108, 10010-10015 https://doi.org/10.1073/pnas.1017386108
- Helwak A, Kudla G, Dudnakova T and Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153, 654-665 https://doi.org/10.1016/j.cell.2013.03.043
- Khorshid M, Hausser J, Zavolan M and van Nimwegen E (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods 10, 253-255 https://doi.org/10.1038/nmeth.2341
- Stern-Ginossar N, Elefant N, Zimmermann A et al (2007) Host immune system gene targeting by a viral miRNA. Science 317, 376-381 https://doi.org/10.1126/science.1140956
- Lin HR and Ganem D (2011) Viral microRNA target allows insight into the role of translation in governing microRNA target accessibility. Proc Nat Acad Sci U S A 108, 5148-5153 https://doi.org/10.1073/pnas.1102033108
- Agarwal V, Bell GW, Nam JW and Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4, e05005
- Kim D, Sung YM, Park J et al (2016) General rules for functional microRNA targeting. Nat Genetics 48, 1517-1526 https://doi.org/10.1038/ng.3694
- Ui-Tei K, Naito Y, Nishi K, Juni A and Saigo K (2008) Thermodynamic stability and Watson-Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA-based off-target effect. Nucleic Acids Res 36, 7100-7109 https://doi.org/10.1093/nar/gkn902
- Arvey A, Larsson E, Sander C, Leslie CS and Marks DS (2010) Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6, 363
- Garcia DM, Baek D, Shin C, Bell GW, Grimson A and Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18, 1139-1146 https://doi.org/10.1038/nsmb.2115
- Didiano D and Hobert O (2006) Perfect seed pairing is not a generally reliable predictor for miRNA-target interactions. Nat Struct Mol Biol 13, 849-851 https://doi.org/10.1038/nsmb1138
- Xia T, SantaLucia J Jr, Burkard ME et al (1998) Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry 37, 14719-14735 https://doi.org/10.1021/bi9809425
- Kim D, Kim J and Baek D (2014) Global and Local Competition between Exogenously Introduced microRNAs and Endogenously Expressed microRNAs. Mol Cells 37, 412-417 https://doi.org/10.14348/molcells.2014.0100
- van Kouwenhove M, Kedde M and Agami R (2011) MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 11, 644-656 https://doi.org/10.1038/nrc3107
- Triboulet R and Gregory RI (2010) Pumilio turns on microRNA function. Nat Cell Biol 12, 928-929 https://doi.org/10.1038/ncb1010-928
- Bazzini AA, Lee MT and Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233-237 https://doi.org/10.1126/science.1215704
- Meijer HA, Kong YW, Lu WT et al (2013) Translational repression and eIF4A2 activity are critical for microRNAmediated gene regulation. Science 340, 82-85 https://doi.org/10.1126/science.1231197
- Jangra RK, Yi M and Lemon SM (2010) Regulation of hepatitis C virus translation and infectious virus production by the microRNA miR-122. J Virol 84, 6615-6625 https://doi.org/10.1128/JVI.00417-10
- Moretti F, Thermann R and Hentze MW (2010) Mechanism of translational regulation by miR-2 from sites in the 5' untranslated region or the open reading frame. RNA 16, 2493-2502 https://doi.org/10.1261/rna.2384610