DOI QR코드

DOI QR Code

Applicability evaluation of aerodynamic approaches for evaporation estimation using pan evaporation data

증발접시 증발량자료를 이용한 공기동력학적 증발량 산정 방법의 적용성 평가

  • Rim, Chang-Soo (Department of Civil Engineering, Kyonggi University)
  • 임창수 (경기대학교 공과대학 토목공학과)
  • Received : 2017.08.21
  • Accepted : 2017.10.09
  • Published : 2017.11.30

Abstract

In this study, applicabilities of aerodynamic approaches for the estimation of pan evaporation were evaluated on 56 study stations in South Korea. To accomplish this study purpose, previous researchers' evaporation estimation equations based on aerodynamic approaches were grouped into seven generalized evaporation models. Furthermore, four multiple linear regression (MLR) models were developed and tested. The independent variables of MLR models are meteorological variables such as wind speed, vapor pressure deficit, air temperature, and atmospheric pressure. These meteorological variables are required for the application of aerodynamic approaches. In order to consider the effect of autocorrelation, MLR models were developed after differencing variables. The applicability of MLR models with differenced variables was compared with that of MLR models with undifferenced variables and the comparison results showed no significant difference between the two methods. The study results have indicated that there is strong correlation between estimated pan evaporation (using aerodynamic models and MLR models) and measured pan evaporation. However, pan evaporation are overestimated during August, September, October, November, and December. Most of meteorological variables that are used for MLR models show statistical significance in the estimation of pan evaporation. Vapor pressure deficit was turned out to be the most significant meteorological variable. The second most significant variable was air temperature; wind speed was the third most significant variable, followed by atmospheric pressure.

본 연구에서는 우리나라 56개 연구지역에 대해서 증발량 산정방법 중에 하나인 공기동력학적 방법의 적용성을 검토하였다. 이를 위해 과거 연구자들에 의해서 제안된 공기동력학적 증발량 산정식들을 7가지 형식으로 구분하고 일반화하여 증발량 산정모델을 유도하였다. 또한, 공기동력학적 방법 적용에 필요한 기상요소자료들(풍속, 포화미흡량, 기온, 대기압)을 이용하여 4가지의 다변량 선형회귀모델을 유도하고 그 적용성을 검토하였다. 기상자료들의 자기상관의 영향을 고려하기 위해 변수들을 차분시켜 회귀분석을 실시하고 자기상관을 고려하지 않은 경우와 비교한 결과 결정계수 값에 큰 차이가 없음을 확인하였다. 연구결과에 의하면 공기동력학적 모델이나 다변량 선형회귀모델 모두에서 산정된 월 증발량과 관측된 월 증발량 사이에 매우 높은 상관성이 있는 것으로 나타났다. 하지만 대부분의 증발량 산정모델에서 8, 9, 10, 11, 12월에 증발량을 과다 산정하고 있는 것으로 나타났다. 다변량 선형회귀모델들에 사용된 기상요소자료들은 모두 증발량 산정에 유의한 영향력이 있는 것으로 나타났으며, 특히 포화 미흡량이 가장 중요한 기상요소이며, 두 번째로는 기온, 세 번째로는 풍속, 그리고 마지막으로 대기압인 것으로 나타났다.

Keywords

References

  1. Allen, R. G., Peretira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, FAO, ISBN 92-5-104219-5.
  2. Assouline, S., and Mahrer, Y. (1993). "Evaporation from Lake Kinneret: 1 eddy correlation system measurements and energy budget estimates." Water Resources Research, Vol. 29, No. 4, pp. 901-910. https://doi.org/10.1029/92WR02432
  3. Dalton, J. (1802). "Experimental essays on the constitution of mixed gases: on the force of steam or vapor from water or other liquid in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat." Manchester Literary and Philosophical Society. Memoirs and Proceedings, Vol. 5, pp. 536-602.
  4. Fitzerald, D. (1886). "Evaporation." Transactions of the American Society of Civil Engineers, Vol. 98(HY12), pp. 2073-2085.
  5. Gangopaghaya, M., Harbeck, G. E., Nordenson, T. J., Omar, M. H., and Uryvaev, V. A. (1966). Measurement and estimation of evaporation and evapotranspiration. Technical Note 83, 121pp. World Meteorological Organization.
  6. Goddard, W. B., and Pruitt, W. O. (1966). "Mass transfer-eddy flux methods." Proceedings, ASAE Conference on Evapotranspiration and Its Role in Water Resourcaes Management, Chicago Ill, pp. 38-41.
  7. Guitjens, J. C. (1982). "Models of alfalfa yield evapotranspiration." Journal of the Irrigation and Drainage Division, Vol. 108, No. 3, pp. 212-222.
  8. Han, J.-S., and Lee, B.-Y. (2005). "Measurement and analysis of free water evaporation at HaeNam paddy field." Korean Journal of Agricultural and Forest Meteorology, Vol. 7, No.1, pp. 91-97.
  9. Harbeck, G. E. (1958). "Water loss investigations, Lake Mead studies." U.S. Geological Survey Professional Paper 298, US Government Printing Office, Washington, D.C.
  10. Harbeck, G. E., Kohler, M. A., Koberg, G. E., and others. (1954). "Water loss investigations: Lake Mead studies." USGS Professional Paper 298, US Government Printing Office, Washing, D.C.
  11. Harbeck, G. E. (1962). "A practical field technique for measuring reservoir evaporation utilizing mass-transfer theory." Geological Survey Professional Paper 272-E, 101-5. Washington, D.C.: U.S. Government Printing Office.
  12. Harbeck, G. E., Kohler, M. A., and Koberg, G. E. (1954). "Water loss investigations: Lake Hafner studies." USGS Professional Paper 269, pp. 1-158. US Geological Survey.
  13. Horton, R. E. (1919). "Rainfall interception." Monthly Weather Review, Vol. 47, No. 9, pp. 603-623. https://doi.org/10.1175/1520-0493(1919)47<603:RI>2.0.CO;2
  14. Jensen, M. E. (1973). Consumptive use of water and irrigation requirements. ASAE, New York.
  15. Kuzman, P. O. (1957). "Hydrophysical investigations of land waters." International Association of Hydrological Sciences Publication, Vol. 3, pp. 468-478.
  16. Lapworth, C. F. (1965). "Evaporation from a reservoir near London." Journal of the Institution of Water Engineers, Vol. 19, pp. 163-181.
  17. Linacre, E. T. (1993). "Data-sparse estimation of lake evaporation, using a simplified Penman equation." Agricultural and Forest Meteorology, Vol. 64, No. 3-4, pp. 237-256. https://doi.org/10.1016/0168-1923(93)90031-C
  18. Meyer, A. F. (1915). "Computing runoff from and other physical data." Transactions of the American Society of Civil Engineers, Vol. 79. pp. 1055-1155.
  19. Meyer, A. F. (1944). Evaporation from lakes and Reservoirs. Minnesota Resources Commission, St. Paul, MN.
  20. Mkhwanazi, M., Chavez, J. L., and Rambikur, E. H. (2012). "Comparison of large aperture scintillometer and satellite-based energy balance models in sensible heat flux and crop evapotranspiration determination." International Journal of Remote Sensing Applications, Vol. 2, No. 1, pp. 24-30.
  21. Paul, G., Gowda, P. H., Prasad, V., Howell, T. A., and Staggenborg, S. A. "Evaluating surface energy balance system (SEBS) using aircraft data collected during BEAREX07." World Environmental and Water Resources Congress 2011: Bearing knowledge for sustainability, pp. 2777-2786.
  22. Penman, H. L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 193, pp. 120-145. https://doi.org/10.1098/rspa.1948.0037
  23. Priestley, C. H. B., and Taylor, R. J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92. https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2
  24. Rohwer, C. (1931). "Evaporation from free water surfaces." Technical Bulletin 271, US Department of Agriculture, Washington, D.C.
  25. Sene, K. J. Gash, J. H., and McNeil, D. D. (1991). "Evaporation from a tropical lake: comparison of theory with direct measurements." Journal of Hydrology, Vol. 127, No. 1-4, pp. 193-217. https://doi.org/10.1016/0022-1694(91)90115-X
  26. Sill, B. L. (1981). "Free and forced convection effects on evaporation." Journal of Hydraulic Engineering, Vol. 109, No. 9, pp. 1216-1231. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:9(1216)
  27. Stannard, D. I., and Rosenberry, D. O. (1991). "A comparison of short-term measurements of lake evaporation using eddy correlation and energy budget methods." Journal of Hydrology, Vol. 122, No. 1-4, pp. 15-22. https://doi.org/10.1016/0022-1694(91)90168-H
  28. Stewart, R. B., and Rouse, W. R. (1976). "A simple method for determining the evaporaton from shallow lakes and ponds." Water Resources Research, Vol. 12, No. 4, pp. 623-628. https://doi.org/10.1029/WR012i004p00623
  29. Sutton, O. G. (1949). "The application to micrometeorology of the theory of turbulent flow over rough surfaces." Quarterly Journal of the Royal Meteorological Society, Vol. 75, No. 326, pp. 335-350. https://doi.org/10.1002/qj.49707532602
  30. Sverdrup, H. U. (1946). "The humidity gradient over the sea surface." Journal of Atmospheric Sciences, Vol. 3, No. 1, pp. 1-8.
  31. Tanner, C. B. (1966). "Comparison of energy balance and mass transport methods for measuring evaporation." Proceedings, ASAE Conference on Evapotranspiration and Its Role in Water Resourcaes Management, Chicago Ill, pp. 45-48,
  32. Thornthwaite, C. W., and Holtman, B. (1939). "The determination of land and water surfaces." Monthly Weather Review, Vol. 67, pp. 4-11. https://doi.org/10.1175/1520-0493(1939)67<4:TDOEFL>2.0.CO;2
  33. Tyrvainen, M. (1978). "Upper layer observations and simulation using Kraus and Tuner's model in Gulf of Finland." Nordic Hydrology, Vol. 9, pp. 207-218. https://doi.org/10.2166/nh.1978.0022
  34. Weisman, R. L. (1975). "Comparison of warm water evaporation equations." Journal of the Hydraulics Division, Vol. 101, No. 10, pp. 1303-1313.