• Title/Summary/Keyword: Evaporation estimation

Search Result 90, Processing Time 0.027 seconds

Comparison of incoming solar radiation equations for evaporation estimation (증발량 산정을 위한 입사태양복사식 비교)

  • Rim, Chang-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.129-143
    • /
    • 2011
  • In this study, to select the incoming solar radiation equation which is most suitable for the estimation of Penman evaporation, 12 incoming solar radiation equations were selected. The Penman evaporation rates were estimated using 12 selected incoming solar radiation equations, and the estimated Penman evaporation rates were compared with measured pan evaporation rates. The monthly average daily meteorological data measured from 17 meteorological stations (춘천, 강능, 서울, 인천, 수원, 서산, 청주, 대전, 추풍령, 포항, 대구, 전주, 광주, 부산, 목포, 제주, 진주) were used for this study. To evaluate the reliability of estimated evaporation rates, mean absolute bias error(MABE), root mean square error(RMSE), mean percentage error(MPE) and Nash-Sutcliffe equation were applied. The study results indicate that to estimate pan evaporation using Penman evaporation equation, incoming solar radiation equation using meteorological data such as precipitation, minimum air temperature, sunshine duration, possible duration of sunshine, and extraterrestrial radiation are most suitable for 11 study stations out of 17 study stations.

Estimation of small pan evaporation using temperature data (기온자료를 이용한 소형증발접시 증발량 산정)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.37-53
    • /
    • 2017
  • Pan evaporation has been used as an indirect method for the estimation of reservoir evaporation. Therefore, in this study, pan evaporation estimation equations using only temperature data were suggested in the case that available meteorological data is limited. A formula for estimating the pan evaporation were suggested by comparing estimated pan evaporation with measured pan evaporation in 12 study areas in Korea. The suggested pan evaporation equations were verified in 44 study areas by comparing not only with temperature-based equations but also with equations using other meteorological data (temperature, wind speed, relative humidity, and sunshine duration). The study results indicate that the suggested equations in this study provide much better pan evaporation estimates, compared with other temperature-based equations. Overall, the suggested equations provide appropriate pan evaporation estimates in most of 56 study areas. Therefore, the suggested equations using only temperature data in this study are considered appropriate for the estimation of pan evaporation in Korea especially in the case that available meteorological data is limited. In the future, using the air temperature and pan evaporation data measured at the reservoir, further research is needed to examine the applicability of suggested equations for the estimation of reservoir evaporation.

Evaluation of the evaporation estimation approaches based on solar radiation (일사량에 기초한 증발량 산정방법들의 적용성 평가)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.2
    • /
    • pp.165-175
    • /
    • 2016
  • In order to examine the applicability, the evaporation estimation approaches based on solar radiation are classified into 3 different model groups (Model groups A, B, and C) in this study. Each group is tested in the 6 study stations (Seoul, Daejeon, Jeonju, Busan, Mokpo, and Jeju). The model parameters of each model group are estimated and verified with measured pan evaporation data. The applicability of verified model groups are compared with results of Penman (1948) combination approach. Nash-Sutcliffe (N-S) efficiency coefficients greater than 0.663 in all study stations indicate satisfactory estimates of evaporation. On the other hand, in the model verification process, N-S efficiency coefficients greater than 0.526 in all study stations indicate also satisfactory estimates of evaporation. However, N-S efficiency coefficients in all study cases except Model groups B and C in Busan are less than those of Penman (1948) combination approach. Therefore, it is concluded in this study that the evaporation estimation approaches based on solar radiation have capability to replace Penman (1948) combination approach for the estimation of evaporation in case that some meteorological data (wind speed, relative humidity) are missing or not measured.

Applicability evaluation of aerodynamic approaches for evaporation estimation using pan evaporation data (증발접시 증발량자료를 이용한 공기동력학적 증발량 산정 방법의 적용성 평가)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.11
    • /
    • pp.781-793
    • /
    • 2017
  • In this study, applicabilities of aerodynamic approaches for the estimation of pan evaporation were evaluated on 56 study stations in South Korea. To accomplish this study purpose, previous researchers' evaporation estimation equations based on aerodynamic approaches were grouped into seven generalized evaporation models. Furthermore, four multiple linear regression (MLR) models were developed and tested. The independent variables of MLR models are meteorological variables such as wind speed, vapor pressure deficit, air temperature, and atmospheric pressure. These meteorological variables are required for the application of aerodynamic approaches. In order to consider the effect of autocorrelation, MLR models were developed after differencing variables. The applicability of MLR models with differenced variables was compared with that of MLR models with undifferenced variables and the comparison results showed no significant difference between the two methods. The study results have indicated that there is strong correlation between estimated pan evaporation (using aerodynamic models and MLR models) and measured pan evaporation. However, pan evaporation are overestimated during August, September, October, November, and December. Most of meteorological variables that are used for MLR models show statistical significance in the estimation of pan evaporation. Vapor pressure deficit was turned out to be the most significant meteorological variable. The second most significant variable was air temperature; wind speed was the third most significant variable, followed by atmospheric pressure.

A Study on the Estimation Model of Liquid Evaporation Rate for Classification of Flammable Liquid Explosion Hazardous Area (인화성액체의 폭발위험장소 설정을 위한 증발율 추정 모델 연구)

  • Jung, Yong Jae;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.21-29
    • /
    • 2018
  • In many companies handling flammable liquids, explosion-proof electrical equipment have been installed according to the Korean Industrial Standards (KS C IEC 60079-10-1). In these standards, hazardous area for explosive gas atmospheres has to be classified by the evaluation of the evaporation rate of flammable liquid leakage. The evaporation rate is an important factor to determine the zones classification and hazardous area distance. However, there is no systematic method or rule for the estimation of evaporation rate in these standards and the first principle equations of a evaporation rate are very difficult. Thus, it is really hard for industrial workplaces to employ these equations. Thus, this problem can trigger inaccurate results for evaluating evaporation range. In this study, empirical models for estimating an evaporation rate of flammable liquid have been developed to tackle this problem. Throughout the sensitivity analysis of the first principle equations, it can be found that main factors for the evaporation rate are wind speed and temperature and empirical models have to be nonlinear. Polynomial regression is employed to build empirical models. Methanol, benzene, para-xylene and toluene are selected as case studies to verify the accuracy of empirical models.

An evaluation of evaporation estimates according to solar radiation models (일사량 산정 모델에 따른 증발량 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1033-1046
    • /
    • 2019
  • To evaluate the utilization suitability of solar radiation models, estimated solar radiation from 13 solar radiation models were verified by comparing with measured solar radiation at 5 study stations in South Korea. Furthermore, for the evaluation of evaporation estimates according to solar radiation models, 5 different evaporation estimation equations based on Penman's combination approach were applied, and evaporation estimates were compared with pan evaporation. Some solar radiation models require only meteorological data; however, some other models require not only meteorological data but also geographical data such as elevation. The study results showed that solar radiation model based on the ratio of the duration of sunshine to the possible duration of sunshine, maximum temperature, and minimum temperature provided the estimated solar radiation that most closely match measured solar radiation. Accuracy of estimated solar radiation also greatly improved when Angstrőm-Prescott model coefficients are adjusted to the study stations. Therefore, when choosing the solar radiation model for evaporation estimation, both data availability and model capability should be considered simultaneously. When applying measured solar radiation for estimating evaporation, evaporation estimates from Penman, FAO Penman-Monteith, and KNF equations are most close to pan evaporation rates in Jeonju and Jeju, Seoul and Mokpo, and Daejeon respectively.

A Study on the Estimation of Monthly Average River Basin Evaporation (월(月) 평균유역증발산량(平均流域蒸發散量) 추정(推定)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.195-202
    • /
    • 1981
  • The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$ $E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.

  • PDF

The effect of fuel evaporation in the intake valve back on mixture preparation (흡기밸브에서의 연료증발이 혼합기 형성에 미치는 영향)

  • 박승현;이종화;유재석;신영기;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.107-115
    • /
    • 1999
  • Hydrocarbon emission from spark ignition engines deeply relates with fuel evaporation mechanism. Therefore, fuel evaporation on the back of the intake valve is very important to understand fuel evaporation mechanism during engine warm up period. Intake valve heat transfer model was build up to estimate the amount of fuel evaporation on the intake valve back . Intake valve temperature was measured intake valve temperature is increased rapidly during few seconds right after engine start up and it takes an important role on fuel evaporation. The liquid fuel evaporation rate on the intake valve back proportionally increases as valve temperature increases, however its contribution slightly decreases as intake port wall temperature increases. The fuel evaporation rate on the valve back is about 40∼60% during engine warm-up period and it becomes about 20∼30% as intake port wall temperature increases. The estimation model also makes possible model also makes possible to review the effect of valve design parameters such as the valve mass and seat area on fuel evaporation rate through intake valve heat transfer.

  • PDF

A Statistical Study Evaporation tn DAEGU Area (대구지방의 증발량에 대한 통계학적 연구)

  • 김영기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.4
    • /
    • pp.3160-3169
    • /
    • 1973
  • Rainfall, evaporation, and permeability of water are the most important factors in determining the demand of water. The Daegu area has only a meteorologi observatory and there is not sufficient data for adapting the advanced method for derivation of the estimated of evaporation in the Daegu area. However, by using available data, the writer devoted his great effort in deriving the most reasonable formula applicable to the Daegu area and it is adaptable for various purposes such as industry and estimation of groundwater etc. The data used in this study was the monthly amount of evaporation of the Daegu area for the past 13 years(1960 to 1970). A year can be divided into two groups by relative degrees of evaporation in this area: the first group (less evaporation) is January, February, March, October, November, and December, and the second (more evaporation) is April, May, June, July, August, and September. The amount of evaporation of the two groups were statistically treated by the theory of probability for derivation of estimated formula of evaporation. The formula derved is believed to fully consider. The characteristic hydrological environment of this area as the following shows: log(x+3)=0.8963+0.1125$\xi$..........(4, 5, 6, 7, 8, 9 month) log(x-0.7)=0.2051+0.3023$\xi$..........(1, 2, 3, 10, 11, 12 month) This study obtained the above formula of probability of the monthly evaporation of this area by using the relation: $F_(x)=\frac{1}{{\surd}{\pi}}\int\limits_{-\infty}^{\xi}e^{-\xi2}d{\xi}\;{\xi}=alog_{\alpha}({\frac{x_0+b'}{x_0+b})\;(-b<x<{\infty})$ $$log(x_0+b)=0.80961$ $$\frac{1}{a}=\sqrt{\frac{2N}{N-1}}\;Sx=0.1125$$ $$b=\frac{1}{m}\sum\limits_{i-I}^{m}b_s=3.14$$ $$S_x=\sqrt{\frac{1}{N}\sum\limits_{i-I}^{N}\{log(x_i+b)\}^2-\{log(x_i+b)\}^2}=0.0791$$ (4, 5, 6, 7, 8, 9 month) This formula may be advantageously applied to estimation of evaporation in the Daegu area. Notation for general terms has been denoted by following: $W_(x)$: probability of occurance. $$W_(x)=\int_x^{\infty}f(x)dx$$ P : probability $$P=\frac{N!}{t!(N-t)}{F_i^{N-{\pi}}(1-F_i)^l$$ $$F_{\eta}:\; Thomas\;plot\;F_{\eta}=(1-\frac{n}{N+1})$$ $X_l\;X_i$: maximun, minimum value of total number of sample size(other notation for general terms was used as needed)

  • PDF