Acknowledgement
Supported by : National Natural Science Foundation of China, Chengdu University of Technology, Chongqing Municipal Education Commission
References
- Attar, P.J. and Dowell, E.H. (2005), "A reduced order system ID approach to the modeling of nonlinear structural behavior in aeroelasticity", J. Fluid Struct., 21(5), 531-542. https://doi.org/10.1016/j.jfluidstructs.2005.08.012
- Dowell, E.H. (1970), "Panel flutter: A review of the aeroelastic stability of panel and shells", AIAA J., 8(3), 385-399. https://doi.org/10.2514/3.5680
- Forsching, H.W. (1980), "Principles of Aeroelasticity", Shanghai Science & Technology Press, Shanghai. (in Chinese)
- Gluck, M., Breuer, M., Durst, F., Halfmann, A. and Rank, E. (2001). "Computation of fluid-structure interaction on lightweight structures", J. Wind Eng. Ind. Aerod., 89(14), 1351-1368. https://doi.org/10.1016/S0167-6105(01)00150-7
- Ivovich, V.A. and Pokrovskii, L.N. (1991), "Dynamic analysis of suspended roof systems", A. A. Balkema, Rotterdam.
- Kawakita, S., Bienkiewicz, B. and Cermak, J.E. (1992), "Aerolelastic model study of suspended cable roof", J. Wind Eng. Ind. Aerod., 42 (1), 1459-1470. https://doi.org/10.1016/0167-6105(92)90153-2
- Kornecki, A., Dowell E.H. and O'Brien, J. (1976), "On the aeroelastic instability of two-dimensional panels in uniform incompressible flow", J. Sound Vib., 47(2), 163-178. https://doi.org/10.1016/0022-460X(76)90715-X
- Liu, C.J., Zheng, Z.L., Jun, L., Guo, J.J., and Wu, K. (2013), "Dynamic analysis for nonlinear vibration of prestressed orthotropic membrane structure with viscous damping", Int. J. Struct. Stab. Dy., 13(2), Article ID 1350018, 32 pages.
- Liu, C.J., Zheng, Z.L., Yang, X.Y., and Zhao, H. (2014), "Nonlinear damped vibration of pre-stressed orthotropic membrane structure under impact loading", Int. J. Struct. Stab. Dy., 14(1), Article ID 1350055, 24 pages.
- Lu, D., Lou, W.J. and Yang, Y. (2013), "Numerical calculation on wind-induced damping of membrane structure based on fluid-structure interaction", J. Vib. Shock, 6, 011.
- Luo Y.C. (2006), "The accident analysis of membrane structures and several aspects to structural design", Spec. Struct., 23(1), 26-29.
- Michalski, A., Kermel, P.D., Haug, E., Lohner, R., Wuchner, R. and Bletzinger, K U. (2011), "Validation of the computational fluid-structure interaction simulation at real-scale tests of a flexible 29m umbrella in natural wind flow", J. Wind Eng. Ind. Aerod., 99(4), 400-413. https://doi.org/10.1016/j.jweia.2010.12.010
- Minarni, H., Okuda, Y. and Kawamura, S. (1993), "Experimental studies on the flutter behavior of membranes in a wind tunnel", Space Struct., 4, 935-945.
- Miyake, A., Yoshimura, T. and Makino, M. (1992), "Aerodynamic instability of suspended roof modals", J. Wind Eng. Ind. Aerod., 42(1), 1471-1482. https://doi.org/10.1016/0167-6105(92)90154-3
- Scott, R.C., Bartels, R.E. and Kandil, O.A. (2007), "An aeroelastic analysis of a thin flexible membrane", Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April.
- Shin, C.J., Kim, W. and Chung, J.T. (2004), "Free in-plane vibration of an axially moving membrane", J. Sound Vib., 272(1-2), 137-154. https://doi.org/10.1016/S0022-460X(03)00323-7
- Stanford, B. and Sytsma, M. (2007), "Static aeroelastic model validation of membrane micro air vehicle wings", AIAA J., 45(12), 2828-2837. https://doi.org/10.2514/1.30003
- Stanford, B. and Ifju, P. (2008), "Fixed membrane wings for micro air vehicles: Experimental characterization, numerical modeling, and tailoring", Prog. Aerosp. Sci., 44(4), 258-294. https://doi.org/10.1016/j.paerosci.2008.03.001
- Sun, B.N., Mao G.D. and Lou, W.J. (2003), "Wind induced coupling dynamic response of closed membrane structures", Proceedings of the 11th International Conference on Wind Engineering, Sanya, Hainan, Dec.
- Sun, F.J., and Gu, M. (2014), "A numerical solution to fluid-structure interaction of membrane structures under wind action", Wind Struct., 19(1), 35-58. https://doi.org/10.12989/was.2014.19.1.035
- Sygulski, R. (1994), "Dynamic analysis of open membrane structures interaction with air", Int. J. Numer. Meth. Eng., 37(11), 1807-1823. https://doi.org/10.1002/nme.1620371103
- Sygulski, R. (1997), "Numerical analysis of membrane stability in air flow", J. Sound Vib., 201(3), 281-292. https://doi.org/10.1006/jsvi.1995.0790
- Sygulski, R. (1996). "Dynamic stability of pneumatic structures in wind: theory and experiment", J. Fluid. Struct., 10(8), 945-963. https://doi.org/10.1006/jfls.1996.0060
- Uematsu, Y. and Uchiyama, K. (1986), "Aeroelastic behavior of an H.P. shaped suspended roof", Proceedings of the IASS Symposium on Membrane Structures and Space Frame, Osaka, May.
- Wu, Y., Chen, Z.Q., and Sun, X.Y. (2015), "Research on the wind-induced aero-elastic response of closed-type saddle-shaped tensioned membrane models", J. Zhejiang Univ. Sci. A, 16(8), 656-668. https://doi.org/10.1631/jzus.A1400340
- Wu, Y., Sun, X. and Shen, S. (2008), "Computation of wind-structure interaction on tension structures", J. Wind Eng. Ind. Aerod., 96(10), 2019-2032. https://doi.org/10.1016/j.jweia.2008.02.043
- Xu, Y.P., Zheng, Z.L., Liu, C.J., Song, W.J. and Long, J. (2011), "Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid", J. Eng. Mech. - ASCE, 137(11), 759-768. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000278
- Yang, Q.S. and Liu, R.X. (2005), "On aerodynamic stability of membrane structures", Int. J. Space Struct., 20(3), 181-188. https://doi.org/10.1260/026635105775213782
- Zhou, Y., Li, Y., Shen, Z., Wang, L. and Tamura, Y. (2014), "Numerical analysis of added mass for open flat membrane vibrating in still air using the boundary element method", J. Wind Eng. Ind. Aerod., 131, 100-111. https://doi.org/10.1016/j.jweia.2014.05.007
- Zheng, Z.L., Xu, Y.P., Liu, C.J. He, X.T. and Song, W.J. (2011), "Nonlinear aerodynamic stability analysis of orthotropic membrane structures with large amplitude", Struct. Eng. Mech., 37(4), 401-413. https://doi.org/10.12989/sem.2011.37.4.401
Cited by
- Influence of different material parameters on nonlinear vibration of the cylindrical skeleton supported prestressed fabric composite membrane vol.60, pp.1, 2017, https://doi.org/10.1515/rams-2021-0026